Data-driven aerospace engineering: reframing the industry with machine learning

SL Brunton, J Nathan Kutz, K Manohar, AY Aravkin… - Aiaa Journal, 2021 - arc.aiaa.org
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …

Feature selection: A data perspective

J Li, K Cheng, S Wang, F Morstatter… - ACM computing …, 2017 - dl.acm.org
Feature selection, as a data preprocessing strategy, has been proven to be effective and
efficient in preparing data (especially high-dimensional data) for various data-mining and …

[BOEK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

COSTA: covariance-preserving feature augmentation for graph contrastive learning

Y Zhang, H Zhu, Z Song, P Koniusz, I King - Proceedings of the 28th …, 2022 - dl.acm.org
Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA
on various downstream tasks. The graph augmentation step is a vital but scarcely studied …

[BOEK][B] Machine learning for data streams: with practical examples in MOA

A Bifet, R Gavalda, G Holmes, B Pfahringer - 2023 - books.google.com
A hands-on approach to tasks and techniques in data stream mining and real-time analytics,
with examples in MOA, a popular freely available open-source software framework. Today …

Graph summarization methods and applications: A survey

Y Liu, T Safavi, A Dighe, D Koutra - ACM computing surveys (CSUR), 2018 - dl.acm.org
While advances in computing resources have made processing enormous amounts of data
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …

Methods for pruning deep neural networks

S Vadera, S Ameen - IEEE Access, 2022 - ieeexplore.ieee.org
This paper presents a survey of methods for pruning deep neural networks. It begins by
categorising over 150 studies based on the underlying approach used and then focuses on …

Flora: Low-rank adapters are secretly gradient compressors

Y Hao, Y Cao, L Mou - arxiv preprint arxiv:2402.03293, 2024 - arxiv.org
Despite large neural networks demonstrating remarkable abilities to complete different
tasks, they require excessive memory usage to store the optimization states for training. To …

Turning Big Data Into Tiny Data: Constant-Size Coresets for -Means, PCA, and Projective Clustering

D Feldman, M Schmidt, C Sohler - SIAM Journal on Computing, 2020 - SIAM
We develop and analyze a method to reduce the size of a very large set of data points in a
high-dimensional Euclidean space R^d to a small set of weighted points such that the result …

Dimensionality reduction for k-means clustering and low rank approximation

MB Cohen, S Elder, C Musco, C Musco… - Proceedings of the forty …, 2015 - dl.acm.org
We show how to approximate a data matrix A with a much smaller sketch~ A that can be
used to solve a general class of constrained k-rank approximation problems to within (1+ ε) …