Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Data-driven aerospace engineering: reframing the industry with machine learning
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
Feature selection: A data perspective
Feature selection, as a data preprocessing strategy, has been proven to be effective and
efficient in preparing data (especially high-dimensional data) for various data-mining and …
efficient in preparing data (especially high-dimensional data) for various data-mining and …
[BOEK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
COSTA: covariance-preserving feature augmentation for graph contrastive learning
Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA
on various downstream tasks. The graph augmentation step is a vital but scarcely studied …
on various downstream tasks. The graph augmentation step is a vital but scarcely studied …
[BOEK][B] Machine learning for data streams: with practical examples in MOA
A hands-on approach to tasks and techniques in data stream mining and real-time analytics,
with examples in MOA, a popular freely available open-source software framework. Today …
with examples in MOA, a popular freely available open-source software framework. Today …
Graph summarization methods and applications: A survey
While advances in computing resources have made processing enormous amounts of data
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …
Methods for pruning deep neural networks
This paper presents a survey of methods for pruning deep neural networks. It begins by
categorising over 150 studies based on the underlying approach used and then focuses on …
categorising over 150 studies based on the underlying approach used and then focuses on …
Flora: Low-rank adapters are secretly gradient compressors
Despite large neural networks demonstrating remarkable abilities to complete different
tasks, they require excessive memory usage to store the optimization states for training. To …
tasks, they require excessive memory usage to store the optimization states for training. To …
Turning Big Data Into Tiny Data: Constant-Size Coresets for -Means, PCA, and Projective Clustering
We develop and analyze a method to reduce the size of a very large set of data points in a
high-dimensional Euclidean space R^d to a small set of weighted points such that the result …
high-dimensional Euclidean space R^d to a small set of weighted points such that the result …
Dimensionality reduction for k-means clustering and low rank approximation
We show how to approximate a data matrix A with a much smaller sketch~ A that can be
used to solve a general class of constrained k-rank approximation problems to within (1+ ε) …
used to solve a general class of constrained k-rank approximation problems to within (1+ ε) …