Feature selection techniques for machine learning: a survey of more than two decades of research

D Theng, KK Bhoyar - Knowledge and Information Systems, 2024 - Springer
Learning algorithms can be less effective on datasets with an extensive feature space due to
the presence of irrelevant and redundant features. Feature selection is a technique that …

Emotion recognition in EEG signals using deep learning methods: A review

M Jafari, A Shoeibi, M Khodatars… - Computers in Biology …, 2023 - Elsevier
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making,
planning, reasoning, and other mental states. As a result, they are considered a significant …

A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning

D Elreedy, AF Atiya, F Kamalov - Machine Learning, 2024 - Springer
Class imbalance occurs when the class distribution is not equal. Namely, one class is under-
represented (minority class), and the other class has significantly more samples in the data …

A survey on imbalanced learning: latest research, applications and future directions

W Chen, K Yang, Z Yu, Y Shi, CLP Chen - Artificial Intelligence Review, 2024 - Springer
Imbalanced learning constitutes one of the most formidable challenges within data mining
and machine learning. Despite continuous research advancement over the past decades …

Machine learning-guided protein engineering

P Kouba, P Kohout, F Haddadi, A Bushuiev… - ACS …, 2023 - ACS Publications
Recent progress in engineering highly promising biocatalysts has increasingly involved
machine learning methods. These methods leverage existing experimental and simulation …

Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a sco** review

AAH de Hond, AM Leeuwenberg, L Hooft… - NPJ digital …, 2022 - nature.com
While the opportunities of ML and AI in healthcare are promising, the growth of complex data-
driven prediction models requires careful quality and applicability assessment before they …

[HTML][HTML] A literature review of fault diagnosis based on ensemble learning

Z Mian, X Deng, X Dong, Y Tian, T Cao, K Chen… - … Applications of Artificial …, 2024 - Elsevier
The accuracy of fault diagnosis is an important indicator to ensure the reliability of key
equipment systems. Ensemble learning integrates different weak learning methods to obtain …

[HTML][HTML] Interpretable machine learning for imbalanced credit scoring datasets

Y Chen, R Calabrese, B Martin-Barragan - European Journal of …, 2024 - Elsevier
The class imbalance problem is common in the credit scoring domain, as the number of
defaulters is usually much less than the number of non-defaulters. To date, research on …

Distributed denial of service attack prediction: Challenges, open issues and opportunities

AB De Neira, B Kantarci, M Nogueira - Computer Networks, 2023 - Elsevier
Abstract Distributed Denial of Service (DDoS) attack is one of the biggest cyber threats.
DDoS attacks have evolved in quantity and volume to evade detection and increase …