Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis

S Kaffash, AT Nguyen, J Zhu - International journal of production economics, 2021 - Elsevier
The volume and availability of data in the Intelligent Transportation System (ITS) result in the
need for data-driven approaches. Big Data algorithms are applied to further enhance the …

Spatio-temporal meta-graph learning for traffic forecasting

R Jiang, Z Wang, J Yong, P Jeph, Q Chen… - Proceedings of the …, 2023 - ojs.aaai.org
Traffic forecasting as a canonical task of multivariate time series forecasting has been a
significant research topic in AI community. To address the spatio-temporal heterogeneity …

HRST-LR: a hessian regularization spatio-temporal low rank algorithm for traffic data imputation

X Xu, M Lin, X Luo, Z Xu - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and
improving traffic efficiency. Due to the delay of network transmission and failure of detectors …

A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction

H Zheng, F Lin, X Feng, Y Chen - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Accurate short-time traffic flow prediction has gained gradually increasing importance for
traffic plan and management with the deployment of intelligent transportation systems (ITSs) …

Edge intelligence: Empowering intelligence to the edge of network

D Xu, T Li, Y Li, X Su, S Tarkoma, T Jiang… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …

A survey on modern deep neural network for traffic prediction: Trends, methods and challenges

DA Tedjopurnomo, Z Bao, B Zheng… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
In this modern era, traffic congestion has become a major source of severe negative
economic and environmental impact for urban areas worldwide. One of the most efficient …

Future intelligent and secure vehicular network toward 6G: Machine-learning approaches

F Tang, Y Kawamoto, N Kato, J Liu - Proceedings of the IEEE, 2019 - ieeexplore.ieee.org
As a powerful tool, the vehicular network has been built to connect human communication
and transportation around the world for many years to come. However, with the rapid growth …

T-GCN: A temporal graph convolutional network for traffic prediction

L Zhao, Y Song, C Zhang, Y Liu, P Wang… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Accurate and real-time traffic forecasting plays an important role in the intelligent traffic
system and is of great significance for urban traffic planning, traffic management, and traffic …

Graph neural networks in node classification: survey and evaluation

S **ao, S Wang, Y Dai, W Guo - Machine Vision and Applications, 2022 - Springer
Neural networks have been proved efficient in improving many machine learning tasks such
as convolutional neural networks and recurrent neural networks for computer vision and …