Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEe …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions

M Ozkan-Okay, E Akin, Ö Aslan, S Kosunalp… - IEEe …, 2024 - ieeexplore.ieee.org
Given the continually rising frequency of cyberattacks, the adoption of artificial intelligence
methods, particularly Machine Learning (ML), Deep Learning (DL), and Reinforcement …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

A novel deep learning-based approach for malware detection

K Shaukat, S Luo, V Varadharajan - Engineering Applications of Artificial …, 2023 - Elsevier
Malware detection approaches can be classified into two classes, including static analysis
and dynamic analysis. Conventional approaches of the two classes have their respective …

Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems

H Alqahtani, G Kumar - Engineering Applications of Artificial Intelligence, 2024 - Elsevier
This paper delves into the transformative role of machine learning (ML) techniques in
revolutionizing the security of electric and flying vehicles (EnFVs). By exploring key domains …

A comparative performance analysis of data resampling methods on imbalance medical data

M Khushi, K Shaukat, TM Alam, IA Hameed… - IEEE …, 2021 - ieeexplore.ieee.org
Medical datasets are usually imbalanced, where negative cases severely outnumber
positive cases. Therefore, it is essential to deal with this data skew problem when training …

Machine learning classifier algorithms for ransomware lockbit prediction

IMM El Emary, KA Yaghi - Journal of Applied Data Sciences, 2024 - bright-journal.org
Advanced virus known as ransomware has been spreading quickly in recent years, resulting
in considerable financial losses for a variety of victims, including businesses, hospitals, and …

A survey on deep learning for cybersecurity: Progress, challenges, and opportunities

M Macas, C Wu, W Fuertes - Computer Networks, 2022 - Elsevier
As the number of Internet-connected systems rises, cyber analysts find it increasingly difficult
to effectively monitor the produced volume of data, its velocity and diversity. Signature-based …

A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks

K Shaukat, S Luo, V Varadharajan - Engineering Applications of Artificial …, 2022 - Elsevier
Malware is constantly evolving with rising concern for cyberspace. Deep learning-based
malware detectors are being used as a potential solution. However, these detectors are …

[HTML][HTML] Securing industrial control systems: Components, cyber threats, and machine learning-driven defense strategies

M Nankya, R Chataut, R Akl - Sensors, 2023 - mdpi.com
Industrial Control Systems (ICS), which include Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control Systems (DCS), and Programmable Logic Controllers …