Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid‐state electrolytes

B Hu, J Xu, Z Fan, C Xu, S Han, J Zhang… - Advanced Energy …, 2023 - Wiley Online Library
Lithium–sulfur batteries are recognized as one of the most promising next‐generation
energy‐storage technologies owing to their high energy density and low cost. Nevertheless …

Surface engineering toward stable lithium metal anodes

G Lu, J Nai, D Luan, X Tao, XW Lou - Science Advances, 2023 - science.org
The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites
caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of …

High‐energy lithium‐ion batteries: recent progress and a promising future in applications

J Xu, X Cai, S Cai, Y Shao, C Hu, S Lu… - Energy & …, 2023 - Wiley Online Library
It is of great significance to develop clean and new energy sources with high‐efficient
energy storage technologies, due to the excessive use of fossil energy that has caused …

Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

N Yao, X Chen, ZH Fu, Q Zhang - Chemical Reviews, 2022 - ACS Publications
Rechargeable batteries have become indispensable implements in our daily life and are
considered a promising technology to construct sustainable energy systems in the future …

A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes

S Li, J Huang, Y Cui, S Liu, Z Chen, W Huang… - Nature …, 2022 - nature.com
The low cycling efficiency and uncontrolled dendrite growth resulting from an unstable and
heterogeneous lithium–electrolyte interface have largely hindered the practical application …

A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries

B Li, Y Chao, M Li, Y **ao, R Li, K Yang, X Cui… - Electrochemical Energy …, 2023 - Springer
Lithium-metal batteries with high energy/power densities have significant applications in
electronics, electric vehicles, and stationary power plants. However, the unstable lithium …

Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes

OB Chae, BL Lucht - Advanced Energy Materials, 2023 - Wiley Online Library
The high energy density required for the next generation of lithium batteries will likely be
enabled by a shift toward lithium metal anode from the conventional intercalation‐based …

An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode

A Hu, W Chen, X Du, Y Hu, T Lei, H Wang… - Energy & …, 2021 - pubs.rsc.org
The solid electrolyte interphase (SEI) layer is pivotal for stable lithium (Li) metal batteries
especially under a high rate. However, the mechanism of Li+ transport through the SEI has …

Anode‐free solid‐state lithium batteries: a review

WZ Huang, CZ Zhao, P Wu, H Yuan… - Advanced Energy …, 2022 - Wiley Online Library
Anode‐free solid‐state lithium batteries are promising for next‐generation energy storage
systems, especially the mobile sectors, due to their enhanced energy density, improved …

Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces

KJ Kim, M Balaish, M Wadaguchi… - Advanced Energy …, 2021 - Wiley Online Library
The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies
can potentially overcome the challenges facing their liquid counterparts while widening the …