Security and privacy challenges of large language models: A survey

BC Das, MH Amini, Y Wu - ACM Computing Surveys, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated extraordinary capabilities and
contributed to multiple fields, such as generating and summarizing text, language …

[HTML][HTML] A survey on large language model (llm) security and privacy: The good, the bad, and the ugly

Y Yao, J Duan, K Xu, Y Cai, Z Sun, Y Zhang - High-Confidence Computing, 2024 - Elsevier
Abstract Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized
natural language understanding and generation. They possess deep language …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arxiv preprint arxiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Extracting training data from diffusion models

N Carlini, J Hayes, M Nasr, M Jagielski… - 32nd USENIX Security …, 2023 - usenix.org
Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted
significant attention due to their ability to generate high-quality synthetic images. In this work …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C **e, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

Scaling data-constrained language models

N Muennighoff, A Rush, B Barak… - Advances in …, 2023 - proceedings.neurips.cc
The current trend of scaling language models involves increasing both parameter count and
training dataset size. Extrapolating this trend suggests that training dataset size may soon be …

Holistic evaluation of language models

P Liang, R Bommasani, T Lee, D Tsipras… - arxiv preprint arxiv …, 2022 - arxiv.org
Language models (LMs) are becoming the foundation for almost all major language
technologies, but their capabilities, limitations, and risks are not well understood. We present …

Large language models struggle to learn long-tail knowledge

N Kandpal, H Deng, A Roberts… - International …, 2023 - proceedings.mlr.press
The Internet contains a wealth of knowledge—from the birthdays of historical figures to
tutorials on how to code—all of which may be learned by language models. However, while …

Emergent and predictable memorization in large language models

S Biderman, U Prashanth, L Sutawika… - Advances in …, 2024 - proceedings.neurips.cc
Memorization, or the tendency of large language models (LLMs) to output entire sequences
from their training data verbatim, is a key concern for deploying language models. In …

Poisoning language models during instruction tuning

A Wan, E Wallace, S Shen… - … Conference on Machine …, 2023 - proceedings.mlr.press
Instruction-tuned LMs such as ChatGPT, FLAN, and InstructGPT are finetuned on datasets
that contain user-submitted examples, eg, FLAN aggregates numerous open-source …