Retrieval-augmented generation for large language models: A survey

Y Gao, Y **ong, X Gao, K Jia, J Pan, Y Bi, Y Dai… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) demonstrate powerful capabilities, but they still face
challenges in practical applications, such as hallucinations, slow knowledge updates, and …

Large language models on graphs: A comprehensive survey

B **, G Liu, C Han, M Jiang, H Ji… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arxiv preprint arxiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Unifying large language models and knowledge graphs: A roadmap

S Pan, L Luo, Y Wang, C Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the
field of natural language processing and artificial intelligence, due to their emergent ability …

Time-llm: Time series forecasting by reprogramming large language models

M **, S Wang, L Ma, Z Chu, JY Zhang, X Shi… - arxiv preprint arxiv …, 2023 - arxiv.org
Time series forecasting holds significant importance in many real-world dynamic systems
and has been extensively studied. Unlike natural language process (NLP) and computer …

Can knowledge graphs reduce hallucinations in llms?: A survey

G Agrawal, T Kumarage, Z Alghamdi, H Liu - arxiv preprint arxiv …, 2023 - arxiv.org
The contemporary LLMs are prone to producing hallucinations, stemming mainly from the
knowledge gaps within the models. To address this critical limitation, researchers employ …

Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph

J Sun, C Xu, L Tang, S Wang, C Lin, Y Gong… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) have made significant strides in various tasks, yet they often
struggle with complex reasoning and exhibit poor performance in scenarios where …

Towards self-interpretable graph-level anomaly detection

Y Liu, K Ding, Q Lu, F Li… - Advances in Neural …, 2024 - proceedings.neurips.cc
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable
dissimilarity compared to the majority in a collection. However, current works primarily focus …

Structure-free graph condensation: From large-scale graphs to condensed graph-free data

X Zheng, M Zhang, C Chen… - Advances in …, 2024 - proceedings.neurips.cc
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …

Retrieval-augmented generation with knowledge graphs for customer service question answering

Z Xu, MJ Cruz, M Guevara, T Wang… - Proceedings of the 47th …, 2024 - dl.acm.org
In customer service technical support, swiftly and accurately retrieving relevant past issues is
critical for efficiently resolving customer inquiries. The conventional retrieval methods in …