Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

A comprehensive survey on design and application of autoencoder in deep learning

P Li, Y Pei, J Li - Applied Soft Computing, 2023 - Elsevier
Autoencoder is an unsupervised learning model, which can automatically learn data
features from a large number of samples and can act as a dimensionality reduction method …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Autoencoders and their applications in machine learning: a survey

K Berahmand, F Daneshfar, ES Salehi, Y Li… - Artificial Intelligence …, 2024 - Springer
Autoencoders have become a hot researched topic in unsupervised learning due to their
ability to learn data features and act as a dimensionality reduction method. With rapid …

Deep learning in mechanical metamaterials: from prediction and generation to inverse design

X Zheng, X Zhang, TT Chen, I Watanabe - Advanced Materials, 2023 - Wiley Online Library
Mechanical metamaterials are meticulously designed structures with exceptional
mechanical properties determined by their microstructures and constituent materials …

Machine learning-aided generative molecular design

Y Du, AR Jamasb, J Guo, T Fu, C Harris… - Nature Machine …, 2024 - nature.com
Abstract Machine learning has provided a means to accelerate early-stage drug discovery
by combining molecule generation and filtering steps in a single architecture that leverages …

[HTML][HTML] Condition monitoring using machine learning: A review of theory, applications, and recent advances

O Surucu, SA Gadsden, J Yawney - Expert Systems with Applications, 2023 - Elsevier
In modern industry, the quality of maintenance directly influences equipment's operational
uptime and efficiency. Hence, based on monitoring the condition of the machinery, predictive …

A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU

FM Shiri, T Perumal, N Mustapha… - arxiv preprint arxiv …, 2023 - arxiv.org
Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and
artificial intelligence (AI), outperforming traditional ML methods, especially in handling …

Deep learning for medical image-based cancer diagnosis

X Jiang, Z Hu, S Wang, Y Zhang - Cancers, 2023 - mdpi.com
Simple Summary Deep learning has succeeded greatly in medical image-based cancer
diagnosis. To help readers better understand the current research status and ideas, this …

Self-supervised learning in remote sensing: A review

Y Wang, CM Albrecht, NAA Braham… - IEEE Geoscience and …, 2022 - ieeexplore.ieee.org
In deep learning research, self-supervised learning (SSL) has received great attention,
triggering interest within both the computer vision and remote sensing communities. While …