Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Autonomous driving for natural paths using an improved deep reinforcement learning algorithm
KK Tseng, H Yang, H Wang, KL Yung… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The purpose of this article is aimed to solve the problem associated with autonomous driving
on the natural paths of planets. The contribution of this work is to propose an improved deep …
on the natural paths of planets. The contribution of this work is to propose an improved deep …
基于多类型传感数据的自动驾驶深度**化学**方法
杨顺, 蒋渊德, 吴坚, 刘海贞 - 吉林大学学报 (工学版), 2019 - xuebao.jlu.edu.cn
提出了一种基于多类型传感数据训练自动驾驶策略的方法, 采用不同卷积网络对高维图像数据和
低维目标级传感数据进行特征提取, 然后对提取特征进行组合, 采用组合特征学**自动驾驶策略 …
低维目标级传感数据进行特征提取, 然后对提取特征进行组合, 采用组合特征学**自动驾驶策略 …
Design and Realization of Intelligent Aero-engine DDPG Controller
R Qian, Y Feng, M Jiang, L Liu - Journal of Physics: Conference …, 2022 - iopscience.iop.org
As the artificial intelligence technology advances, intellectualization has become an
important development trend for the future aero-engine industry. The intelligent aero-engine …
important development trend for the future aero-engine industry. The intelligent aero-engine …
Application of reinforcement learning in the autonomous driving platform of the deepracer
W Zhu, H Du, M Zhu, Y Liu, C Lin… - 2022 41st Chinese …, 2022 - ieeexplore.ieee.org
This article revolves around autonomous driving, mainly introducing the autonomous driving
cloud platform based on the reinforcement learning to improve the autonomous driving of …
cloud platform based on the reinforcement learning to improve the autonomous driving of …
基于态势利导的需求响应自学**优化调度方法
明威宇, **妍, 程时杰, 龙禹, 徐菁, 王少荣 - 电力系统自动化, 2022 - epjournal.csee.org.cn
针对多随机场景下用户可选择需求响应(CCR) 的场景组合激增问题, 利用深度**化学**算法实现
CCR 群组的优选及其所包含节点的优化调度. 首先, 根据CCR 优化调度的约束条件与目标函数 …
CCR 群组的优选及其所包含节点的优化调度. 首先, 根据CCR 优化调度的约束条件与目标函数 …
Modification of Q-learning to adapt to the randomness of environment
X Luo, Y Gao, S Huang, Y Zhao… - … Conference on Control …, 2019 - ieeexplore.ieee.org
Q-learning is a typical model-free algorithm in reinforcement learning to achieve a goal by
interacting with an uncertain environment. However, conventional Q-learning cannot reach …
interacting with an uncertain environment. However, conventional Q-learning cannot reach …
Aggregated multi-deep deterministic policy gradient for self-driving policy
J Wu, H Li - Internet of Vehicles. Technologies and Services …, 2018 - Springer
Self-driving is a significant application of deep reinforcement learning. We present a deep
reinforcement learning algorithm for control policies of self-driving vehicles. This method …
reinforcement learning algorithm for control policies of self-driving vehicles. This method …
[PDF][PDF] 智能网联汽车自动驾驶行为决策方法研究
徐泽洲, 曲大义, 洪家乐, 宋晓晨 - 复杂系统与复杂性科学, 2021 - fzkx.qdu.edu.cn
针对在交叉口自动驾驶车辆与其他车辆直行冲突的问题, 构建自动驾驶汽车行为决策模型,
采用深度**化学**对自动驾驶汽车通过道路交叉口进行训练, 让自动驾驶汽车自主决策学** …
采用深度**化学**对自动驾驶汽车通过道路交叉口进行训练, 让自动驾驶汽车自主决策学** …
[PDF][PDF] An automated driving strategy generating method based on WGAIL–DDPG
M Zhang, X Wan, L Gang, X Lv, Z Wu… - International Journal of …, 2021 - sciendo.com
Reliability, efficiency and generalization are basic evaluation criteria for a vehicle automated
driving system. This paper proposes an automated driving decision-making method based …
driving system. This paper proposes an automated driving decision-making method based …
基于 WGAIL-DDPG (λ) 的车辆自动驾驶决策模型.
张明恒, 吕新飞, 万星, 吴增文 - Journal of Dalian University …, 2022 - search.ebscohost.com
优良的可靠性, 学**效率和模型泛化能力是车辆自动驾驶系统研究的基本要求.
基于深度**化学**理论框架提出了一种用于车辆自动驾驶决策的WGAIL-DDPG (λ) …
基于深度**化学**理论框架提出了一种用于车辆自动驾驶决策的WGAIL-DDPG (λ) …