Adversarial machine learning for network intrusion detection systems: A comprehensive survey

K He, DD Kim, MR Asghar - IEEE Communications Surveys & …, 2023 - ieeexplore.ieee.org
Network-based Intrusion Detection System (NIDS) forms the frontline defence against
network attacks that compromise the security of the data, systems, and networks. In recent …

When machine learning meets privacy: A survey and outlook

B Liu, M Ding, S Shaham, W Rahayu… - ACM Computing …, 2021 - dl.acm.org
The newly emerged machine learning (eg, deep learning) methods have become a strong
driving force to revolutionize a wide range of industries, such as smart healthcare, financial …

Universal and transferable adversarial attacks on aligned language models

A Zou, Z Wang, N Carlini, M Nasr, JZ Kolter… - arxiv preprint arxiv …, 2023 - arxiv.org
Because" out-of-the-box" large language models are capable of generating a great deal of
objectionable content, recent work has focused on aligning these models in an attempt to …

On evaluating adversarial robustness of large vision-language models

Y Zhao, T Pang, C Du, X Yang, C Li… - Advances in …, 2023 - proceedings.neurips.cc
Large vision-language models (VLMs) such as GPT-4 have achieved unprecedented
performance in response generation, especially with visual inputs, enabling more creative …

Glaze: Protecting artists from style mimicry by {Text-to-Image} models

S Shan, J Cryan, E Wenger, H Zheng… - 32nd USENIX Security …, 2023 - usenix.org
Recent text-to-image diffusion models such as MidJourney and Stable Diffusion threaten to
displace many in the professional artist community. In particular, models can learn to mimic …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Red teaming language models with language models

E Perez, S Huang, F Song, T Cai, R Ring… - arxiv preprint arxiv …, 2022 - arxiv.org
Language Models (LMs) often cannot be deployed because of their potential to harm users
in hard-to-predict ways. Prior work identifies harmful behaviors before deployment by using …

Autodan: Generating stealthy jailbreak prompts on aligned large language models

X Liu, N Xu, M Chen, C **ao - arxiv preprint arxiv:2310.04451, 2023 - arxiv.org
The aligned Large Language Models (LLMs) are powerful language understanding and
decision-making tools that are created through extensive alignment with human feedback …

On adaptive attacks to adversarial example defenses

F Tramer, N Carlini, W Brendel… - Advances in neural …, 2020 - proceedings.neurips.cc
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …

A survey on adversarial attacks and defences

A Chakraborty, M Alam, V Dey… - CAAI Transactions …, 2021 - Wiley Online Library
Deep learning has evolved as a strong and efficient framework that can be applied to a
broad spectrum of complex learning problems which were difficult to solve using the …