Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions
P Groisman - Computing, 2006 - Springer
The equation ut= Δ u+ up with homogeneous Dirichlet boundary conditions has solutions
with blow-up if p> 1. An adaptive time-step procedure is given to reproduce the asymptotic …
with blow-up if p> 1. An adaptive time-step procedure is given to reproduce the asymptotic …
Equilibria, Connecting Orbits and a Priori Bounds for Semilinear Parabolic Equations with Nonlinear Boundary Conditions
We consider a semilinear parabolic equation with a nonlinear non-dissipative boundary
condition. In the one-dimensional case we describe bifurcation diagrams for positive and …
condition. In the one-dimensional case we describe bifurcation diagrams for positive and …
[PDF][PDF] Fully discrete adaptive methods for a blow-up problem
FULLY DISCRETE ADAPTIVE METHODS FOR A BLOW-UP PROBLEM 1. Introduction We are
interested in develo** fully discrete adaptive nu Page 1 FULLY DISCRETE ADAPTIVE …
interested in develo** fully discrete adaptive nu Page 1 FULLY DISCRETE ADAPTIVE …
Numerical blow-up for a nonlinear problem with a nonlinear boundary condition
In this paper we study numerical approximations for positive solutions of a nonlinear heat
equation with a nonlinear boundary condition. We describe in terms of the nonlinearities …
equation with a nonlinear boundary condition. We describe in terms of the nonlinearities …
Numerical blow-up for a nonlinear heat equation
FK N'Gohisse, TK Boni - Acta Mathematica Sinica, English Series, 2011 - Springer
This paper concerns the study of the numerical approximation for the following
initialboundary value problem\left {u_t-u_ xx= f\left (u\right), x ∈\left (0, 1\right), t ∈\left (0 …
initialboundary value problem\left {u_t-u_ xx= f\left (u\right), x ∈\left (0, 1\right), t ∈\left (0 …
An adaptive numerical method to handle blow-up in a parabolic system
We study numerical approximations to solutions of a system of two nonlinear diffusion
equations in a bounded interval, coupled at the boundary in a nonlinear way. In certain …
equations in a bounded interval, coupled at the boundary in a nonlinear way. In certain …
Numerical blow‐up for the porous medium equation with a source
We study numerical approximations of positive solutions of the porous medium equation
with a nonlinear source, where m> 1, p> 0 and L> 0 are parameters. We describe in terms of …
with a nonlinear source, where m> 1, p> 0 and L> 0 are parameters. We describe in terms of …
Simultaneous vs. non-simultaneous blow-up in numerical approximations of aparabolic system with non-linear boundary conditions
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of
heat equations ut= Δu, vt= Δv in Ω x (0, T); fully coupled by the boundary conditions $\frac …
heat equations ut= Δu, vt= Δv in Ω x (0, T); fully coupled by the boundary conditions $\frac …
Adaptive numerical schemes for a parabolic problem with blow‐up
In this paper we present adaptive procedures for the numerical study of positive solutions of
the following problem: ut= uxx (x, t)∈(0, 1)×[0, T), ux (0, t)= 0 t∈[0, T), ux (1, t)= up (1, t) t∈[0 …
the following problem: ut= uxx (x, t)∈(0, 1)×[0, T), ux (0, t)= 0 t∈[0, T), ux (1, t)= up (1, t) t∈[0 …
Polynomial equation solving by lifting procedures for ramified fibers
Let be given a parametric polynomial equation system which represents a generically
unramified family of zero-dimensional algebraic varieties. We exhibit an efficient algorithm …
unramified family of zero-dimensional algebraic varieties. We exhibit an efficient algorithm …