Time-series clustering–a decade review

S Aghabozorgi, AS Shirkhorshidi, TY Wah - Information systems, 2015 - Elsevier
Clustering is a solution for classifying enormous data when there is not any early knowledge
about classes. With emerging new concepts like cloud computing and big data and their vast …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

[BOOK][B] An introduction to outlier analysis

CC Aggarwal, CC Aggarwal - 2017 - Springer
Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature. In most applications, the data is created by one or more …

[PDF][PDF] Deep convolutional neural networks on multichannel time series for human activity recognition.

J Yang, MN Nguyen, PP San, X Li, S Krishnaswamy - Ijcai, 2015 - personal.ntu.edu.sg
This paper focuses on human activity recognition (HAR) problem, in which inputs are
multichannel time series signals acquired from a set of bodyworn inertial sensors and …

Graph based anomaly detection and description: a survey

L Akoglu, H Tong, D Koutra - Data mining and knowledge discovery, 2015 - Springer
Detecting anomalies in data is a vital task, with numerous high-impact applications in areas
such as security, finance, health care, and law enforcement. While numerous techniques …

Social big data: Recent achievements and new challenges

G Bello-Orgaz, JJ Jung, D Camacho - Information Fusion, 2016 - Elsevier
Big data has become an important issue for a large number of research areas such as data
mining, machine learning, computational intelligence, information fusion, the semantic Web …

Outlier detection for temporal data: A survey

M Gupta, J Gao, CC Aggarwal… - IEEE Transactions on …, 2013 - ieeexplore.ieee.org
In the statistics community, outlier detection for time series data has been studied for
decades. Recently, with advances in hardware and software technology, there has been a …

A review on time series data mining

T Fu - Engineering Applications of Artificial Intelligence, 2011 - Elsevier
Time series is an important class of temporal data objects and it can be easily obtained from
scientific and financial applications. A time series is a collection of observations made …

Time-series data mining

P Esling, C Agon - ACM Computing Surveys (CSUR), 2012 - dl.acm.org
In almost every scientific field, measurements are performed over time. These observations
lead to a collection of organized data called time series. The purpose of time-series data …

Experiencing SAX: a novel symbolic representation of time series

J Lin, E Keogh, L Wei, S Lonardi - Data Mining and knowledge discovery, 2007 - Springer
Many high level representations of time series have been proposed for data mining,
including Fourier transforms, wavelets, eigenwaves, piecewise polynomial models, etc …