[HTML][HTML] Survey on synthetic data generation, evaluation methods and GANs

A Figueira, B Vaz - Mathematics, 2022 - mdpi.com
Synthetic data consists of artificially generated data. When data are scarce, or of poor
quality, synthetic data can be used, for example, to improve the performance of machine …

A broad review on class imbalance learning techniques

S Rezvani, X Wang - Applied Soft Computing, 2023 - Elsevier
The imbalanced learning issue is related to the performance of learning algorithms in the
presence of asymmetrical class distribution. Due to the complex characteristics of …

Balanced contrastive learning for long-tailed visual recognition

J Zhu, Z Wang, J Chen, YPP Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …

Long-tailed recognition via weight balancing

S Alshammari, YX Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
In the real open world, data tends to follow long-tailed class distributions, motivating the well-
studied long-tailed recognition (LTR) problem. Naive training produces models that are …

A review of methods for imbalanced multi-label classification

AN Tarekegn, M Giacobini, K Michalak - Pattern Recognition, 2021 - Elsevier
Abstract Multi-Label Classification (MLC) is an extension of the standard single-label
classification where each data instance is associated with several labels simultaneously …

Fake news detection based on news content and social contexts: a transformer-based approach

S Raza, C Ding - International Journal of Data Science and Analytics, 2022 - Springer
Fake news is a real problem in today's world, and it has become more extensive and harder
to identify. A major challenge in fake news detection is to detect it in the early phase. Another …

Distribution alignment: A unified framework for long-tail visual recognition

S Zhang, Z Li, S Yan, X He… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Despite the success of the deep neural networks, it remains challenging to effectively build a
system for long-tail visual recognition tasks. To address this problem, we first investigate the …

Contrastive learning based hybrid networks for long-tailed image classification

P Wang, K Han, XS Wei, L Zhang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Learning discriminative image representations plays a vital role in long-tailed image
classification because it can ease the classifier learning in imbalanced cases. Given the …

Long-tailed classification by kee** the good and removing the bad momentum causal effect

K Tang, J Huang, H Zhang - Advances in neural information …, 2020 - proceedings.neurips.cc
As the class size grows, maintaining a balanced dataset across many classes is challenging
because the data are long-tailed in nature; it is even impossible when the sample-of-interest …

The class imbalance problem in deep learning

K Ghosh, C Bellinger, R Corizzo, P Branco… - Machine Learning, 2024 - Springer
Deep learning has recently unleashed the ability for Machine learning (ML) to make
unparalleled strides. It did so by confronting and successfully addressing, at least to a …