Large language models on graphs: A comprehensive survey
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …
advancements in natural language processing, due to their strong text encoding/decoding …
Self-driving laboratories for chemistry and materials science
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …
Through the automation of experimental workflows, along with autonomous experimental …
Long range graph benchmark
Abstract Graph Neural Networks (GNNs) that are based on the message passing (MP)
paradigm generally exchange information between 1-hop neighbors to build node …
paradigm generally exchange information between 1-hop neighbors to build node …
Temporal graph benchmark for machine learning on temporal graphs
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
On over-squashing in message passing neural networks: The impact of width, depth, and topology
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …
Networks that leverage the graph to send messages over the edges. This inductive bias …
Graph inductive biases in transformers without message passing
Transformers for graph data are increasingly widely studied and successful in numerous
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …
Drew: Dynamically rewired message passing with delay
Message passing neural networks (MPNNs) have been shown to suffer from the
phenomenon of over-squashing that causes poor performance for tasks relying on long …
phenomenon of over-squashing that causes poor performance for tasks relying on long …
Exphormer: Sparse transformers for graphs
Graph transformers have emerged as a promising architecture for a variety of graph learning
and representation tasks. Despite their successes, though, it remains challenging to scale …
and representation tasks. Despite their successes, though, it remains challenging to scale …
Graph mamba: Towards learning on graphs with state space models
Graph Neural Networks (GNNs) have shown promising potential in graph representation
learning. The majority of GNNs define a local message-passing mechanism, propagating …
learning. The majority of GNNs define a local message-passing mechanism, propagating …
A generalization of vit/mlp-mixer to graphs
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …
representation learning. Standard GNNs define a local message-passing mechanism which …