Large language models on graphs: A comprehensive survey

B **, G Liu, C Han, M Jiang, H Ji… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Long range graph benchmark

VP Dwivedi, L Rampášek, M Galkin… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) that are based on the message passing (MP)
paradigm generally exchange information between 1-hop neighbors to build node …

Temporal graph benchmark for machine learning on temporal graphs

S Huang, F Poursafaei, J Danovitch… - Advances in …, 2024 - proceedings.neurips.cc
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …

On over-squashing in message passing neural networks: The impact of width, depth, and topology

F Di Giovanni, L Giusti, F Barbero… - International …, 2023 - proceedings.mlr.press
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …

Graph inductive biases in transformers without message passing

L Ma, C Lin, D Lim, A Romero-Soriano… - International …, 2023 - proceedings.mlr.press
Transformers for graph data are increasingly widely studied and successful in numerous
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …

Drew: Dynamically rewired message passing with delay

B Gutteridge, X Dong, MM Bronstein… - International …, 2023 - proceedings.mlr.press
Message passing neural networks (MPNNs) have been shown to suffer from the
phenomenon of over-squashing that causes poor performance for tasks relying on long …

Exphormer: Sparse transformers for graphs

H Shirzad, A Velingker… - International …, 2023 - proceedings.mlr.press
Graph transformers have emerged as a promising architecture for a variety of graph learning
and representation tasks. Despite their successes, though, it remains challenging to scale …

Graph mamba: Towards learning on graphs with state space models

A Behrouz, F Hashemi - Proceedings of the 30th ACM SIGKDD …, 2024 - dl.acm.org
Graph Neural Networks (GNNs) have shown promising potential in graph representation
learning. The majority of GNNs define a local message-passing mechanism, propagating …

A generalization of vit/mlp-mixer to graphs

X He, B Hooi, T Laurent, A Perold… - International …, 2023 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …