Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …
A state-of-the-art survey on solving non-iid data in federated learning
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …
researchers in that it can enable multiple clients to cooperatively train global models without …
Layer-wised model aggregation for personalized federated learning
Abstract Personalized Federated Learning (pFL) not only can capture the common priors
from broad range of distributed data, but also support customized models for heterogeneous …
from broad range of distributed data, but also support customized models for heterogeneous …
Federated learning for generalization, robustness, fairness: A survey and benchmark
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …
collaboration among different parties. Recently, with the popularity of federated learning, an …
Rethinking federated learning with domain shift: A prototype view
Federated learning shows a bright promise as a privacy-preserving collaborative learning
technique. However, prevalent solutions mainly focus on all private data sampled from the …
technique. However, prevalent solutions mainly focus on all private data sampled from the …
No fear of heterogeneity: Classifier calibration for federated learning with non-iid data
A central challenge in training classification models in the real-world federated system is
learning with non-IID data. To cope with this, most of the existing works involve enforcing …
learning with non-IID data. To cope with this, most of the existing works involve enforcing …
End-edge-cloud collaborative computing for deep learning: A comprehensive survey
The booming development of deep learning applications and services heavily relies on
large deep learning models and massive data in the cloud. However, cloud-based deep …
large deep learning models and massive data in the cloud. However, cloud-based deep …
Federated learning in edge computing: a systematic survey
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
Federated learning with buffered asynchronous aggregation
Scalability and privacy are two critical concerns for cross-device federated learning (FL)
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
Flamby: Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data
to collaboratively train machine learning models, without centralizing data. The cross-silo FL …
to collaboratively train machine learning models, without centralizing data. The cross-silo FL …