Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …
massive model sizes that require significant computational and storage resources. To …
Distilling knowledge via knowledge review
Abstract Knowledge distillation transfers knowledge from the teacher network to the student
one, with the goal of greatly improving the performance of the student network. Previous …
one, with the goal of greatly improving the performance of the student network. Previous …
Depgraph: Towards any structural pruning
Structural pruning enables model acceleration by removing structurally-grouped parameters
from neural networks. However, the parameter-grou** patterns vary widely across …
from neural networks. However, the parameter-grou** patterns vary widely across …
Patch diffusion: Faster and more data-efficient training of diffusion models
Diffusion models are powerful, but they require a lot of time and data to train. We propose
Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training …
Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training …
Sheared llama: Accelerating language model pre-training via structured pruning
The popularity of LLaMA (Touvron et al., 2023a; b) and other recently emerged moderate-
sized large language models (LLMs) highlights the potential of building smaller yet powerful …
sized large language models (LLMs) highlights the potential of building smaller yet powerful …
A survey of quantization methods for efficient neural network inference
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …
Neural Network computations, covering the advantages/disadvantages of current methods …
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their …
reduce the size of neural networks by selectively pruning components. Similarly to their …
Pruning and quantization for deep neural network acceleration: A survey
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …
abilities in the field of computer vision. However, complex network architectures challenge …
Structured pruning learns compact and accurate models
The growing size of neural language models has led to increased attention in model
compression. The two predominant approaches are pruning, which gradually removes …
compression. The two predominant approaches are pruning, which gradually removes …
Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments
Deep learning has recently achieved great success in many visual recognition tasks.
However, the deep neural networks (DNNs) are often perceived as black-boxes, making …
However, the deep neural networks (DNNs) are often perceived as black-boxes, making …