Deep learning for medical image-based cancer diagnosis

X Jiang, Z Hu, S Wang, Y Zhang - Cancers, 2023 - mdpi.com
Simple Summary Deep learning has succeeded greatly in medical image-based cancer
diagnosis. To help readers better understand the current research status and ideas, this …

Database meets deep learning: Challenges and opportunities

W Wang, M Zhang, G Chen, HV Jagadish, BC Ooi… - ACM Sigmod …, 2016 - dl.acm.org
Deep learning has recently become very popular on account of its incredible success in
many complex datadriven applications, including image classification and speech …

Prevalence of neural collapse during the terminal phase of deep learning training

V Papyan, XY Han, DL Donoho - Proceedings of the …, 2020 - National Acad Sciences
Modern practice for training classification deepnets involves a terminal phase of training
(TPT), which begins at the epoch where training error first vanishes. During TPT, the training …

Automatic multi-organ segmentation on abdominal CT with dense V-networks

E Gibson, F Giganti, Y Hu, E Bonmati… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can
support diagnosis, treatment planning, and treatment delivery workflows. Segmentation …

Dual path networks

Y Chen, J Li, H **ao, X **, S Yan… - Advances in neural …, 2017 - proceedings.neurips.cc
In this work, we present a simple, highly efficient and modularized Dual Path Network (DPN)
for image classification which presents a new topology of connection paths internally. By …

Pelee: A real-time object detection system on mobile devices

RJ Wang, X Li, CX Ling - Advances in neural information …, 2018 - proceedings.neurips.cc
An increasing need of running Convolutional Neural Network (CNN) models on mobile
devices with limited computing power and memory resource encourages studies on efficient …

Densely connected convolutional networks

G Huang, Z Liu, L Van Der Maaten… - Proceedings of the …, 2017 - openaccess.thecvf.com
Recent work has shown that convolutional networks can be substantially deeper, more
accurate, and efficient to train if they contain shorter connections between layers close to the …

DENSE-INception U-net for medical image segmentation

Z Zhang, C Wu, S Coleman, D Kerr - Computer methods and programs in …, 2020 - Elsevier
Background and objective Convolutional neural networks (CNNs) play an important role in
the field of medical image segmentation. Among many kinds of CNNs, the U-net architecture …

Instance-aware, context-focused, and memory-efficient weakly supervised object detection

Z Ren, Z Yu, X Yang, MY Liu, YJ Lee… - Proceedings of the …, 2020 - openaccess.thecvf.com
Weakly supervised learning has emerged as a compelling tool for object detection by
reducing the need for strong supervision during training. However, major challenges …

A survey on green deep learning

J Xu, W Zhou, Z Fu, H Zhou, L Li - arxiv preprint arxiv:2111.05193, 2021 - arxiv.org
In recent years, larger and deeper models are springing up and continuously pushing state-
of-the-art (SOTA) results across various fields like natural language processing (NLP) and …