Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
A comprehensive survey on poisoning attacks and countermeasures in machine learning
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …
training process. Among them, poisoning attacks have become an emerging threat during …
The impact of adversarial attacks on federated learning: A survey
Federated learning (FL) has emerged as a powerful machine learning technique that
enables the development of models from decentralized data sources. However, the …
enables the development of models from decentralized data sources. However, the …
Fldetector: Defending federated learning against model poisoning attacks via detecting malicious clients
Federated learning (FL) is vulnerable to model poisoning attacks, in which malicious clients
corrupt the global model via sending manipulated model updates to the server. Existing …
corrupt the global model via sending manipulated model updates to the server. Existing …
Federated learning for internet of things: A comprehensive survey
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …
preservation demands in artificial intelligence. As machine learning, federated learning is …
Federated learning in edge computing: a systematic survey
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
A survey on security and privacy of federated learning
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …
decentralized data and training that brings learning to the edge or directly on-device. FL is a …
Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …
solutions to replace the traditional model-driven approaches that proved to be not rich …
Federated learning: A survey on enabling technologies, protocols, and applications
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …
on enabling software and hardware platforms, protocols, real-life applications and use …