Graph representation learning meets computer vision: A survey
A graph structure is a powerful mathematical abstraction, which can not only represent
information about individuals but also capture the interactions between individuals for …
information about individuals but also capture the interactions between individuals for …
Multi-label image recognition with graph convolutional networks
The task of multi-label image recognition is to predict a set of object labels that present in an
image. As objects normally co-occur in an image, it is desirable to model the label …
image. As objects normally co-occur in an image, it is desirable to model the label …
Residual attention: A simple but effective method for multi-label recognition
Multi-label image recognition is a challenging computer vision task of practical use.
Progresses in this area, however, are often characterized by complicated methods, heavy …
Progresses in this area, however, are often characterized by complicated methods, heavy …
Attention-driven dynamic graph convolutional network for multi-label image recognition
Recent studies often exploit Graph Convolutional Network (GCN) to model label
dependencies to improve recognition accuracy for multi-label image recognition. However …
dependencies to improve recognition accuracy for multi-label image recognition. However …
Learning semantic-specific graph representation for multi-label image recognition
Recognizing multiple labels of images is a practical and challenging task, and significant
progress has been made by searching semantic-aware regions and modeling label …
progress has been made by searching semantic-aware regions and modeling label …
Knowledge-guided multi-label few-shot learning for general image recognition
Recognizing multiple labels of an image is a practical yet challenging task, and remarkable
progress has been achieved by searching for semantic regions and exploiting label …
progress has been achieved by searching for semantic regions and exploiting label …
Class attention network for image recognition
Visual attention has become a popular and widely used component for image recognition.
Although various attention-based methods have been proposed and achieved relatively …
Although various attention-based methods have been proposed and achieved relatively …
Transformer-based dual relation graph for multi-label image recognition
The simultaneous recognition of multiple objects in one image remains a challenging task,
spanning multiple events in the recognition field such as various object scales, inconsistent …
spanning multiple events in the recognition field such as various object scales, inconsistent …
Multi-label image recognition by recurrently discovering attentional regions
This paper proposes a novel deep architecture to address multi-label image recognition, a
fundamental and practical task towards general visual understanding. Current solutions for …
fundamental and practical task towards general visual understanding. Current solutions for …
Texts as images in prompt tuning for multi-label image recognition
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-
trained models (eg CLIP) to various downstream tasks in data-limited or label-limited …
trained models (eg CLIP) to various downstream tasks in data-limited or label-limited …