Deep learning in cancer diagnosis, prognosis and treatment selection

KA Tran, O Kondrashova, A Bradley, ED Williams… - Genome medicine, 2021 - Springer
Deep learning is a subdiscipline of artificial intelligence that uses a machine learning
technique called artificial neural networks to extract patterns and make predictions from …

[HTML][HTML] A systematic literature review on crop yield prediction with deep learning and remote sensing

P Muruganantham, S Wibowo, S Grandhi, NH Samrat… - Remote Sensing, 2022 - mdpi.com
Deep learning has emerged as a potential tool for crop yield prediction, allowing the model
to automatically extract features and learn from the datasets. Meanwhile, smart farming …

[HTML][HTML] A systematic review of data fusion techniques for optimized structural health monitoring

S Hassani, U Dackermann, M Mousavi, J Li - Information Fusion, 2024 - Elsevier
Advancements in structural health monitoring (SHM) techniques have spiked in the past few
decades due to the rapid evolution of novel sensing and data transfer technologies. This …

Deep learning based multimodal biomedical data fusion: An overview and comparative review

J Duan, J **ong, Y Li, W Ding - Information Fusion, 2024 - Elsevier
Multimodal biomedical data fusion plays a pivotal role in distilling comprehensible and
actionable insights by seamlessly integrating disparate biomedical data from multiple …

Deep multimodal data fusion

F Zhao, C Zhang, B Geng - ACM computing surveys, 2024 - dl.acm.org
Multimodal Artificial Intelligence (Multimodal AI), in general, involves various types of data
(eg, images, texts, or data collected from different sensors), feature engineering (eg …

Attention, please! A survey of neural attention models in deep learning

A de Santana Correia, EL Colombini - Artificial Intelligence Review, 2022 - Springer
In humans, Attention is a core property of all perceptual and cognitive operations. Given our
limited ability to process competing sources, attention mechanisms select, modulate, and …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Task-oriented multi-user semantic communications for VQA

H **e, Z Qin, GY Li - IEEE Wireless Communications Letters, 2021 - ieeexplore.ieee.org
Semantic communications focus on the transmission of semantic features. In this letter, we
consider a task-oriented multi-user semantic communication system for multimodal data …

Video summarization using deep neural networks: A survey

E Apostolidis, E Adamantidou, AI Metsai… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Video summarization technologies aim to create a concise and complete synopsis by
selecting the most informative parts of the video content. Several approaches have been …

A survey of multimodal hybrid deep learning for computer vision: Architectures, applications, trends, and challenges

K Bayoudh - Information Fusion, 2024 - Elsevier
In recent years, deep learning algorithms have rapidly revolutionized artificial intelligence,
particularly machine learning, enabling researchers and practitioners to extend previously …