Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Diffusion models: A comprehensive survey of methods and applications
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …
record-breaking performance in many applications, including image synthesis, video …
Diffusion models in bioinformatics and computational biology
Denoising diffusion models embody a type of generative artificial intelligence that can be
applied in computer vision, natural language processing and bioinformatics. In this Review …
applied in computer vision, natural language processing and bioinformatics. In this Review …
Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation
A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule
on the learned gradients, and back-propagate the score of a diffusion model through the …
on the learned gradients, and back-propagate the score of a diffusion model through the …
Palette: Image-to-image diffusion models
This paper develops a unified framework for image-to-image translation based on
conditional diffusion models and evaluates this framework on four challenging image-to …
conditional diffusion models and evaluates this framework on four challenging image-to …
Lion: Latent point diffusion models for 3d shape generation
Denoising diffusion models (DDMs) have shown promising results in 3D point cloud
synthesis. To advance 3D DDMs and make them useful for digital artists, we require (i) high …
synthesis. To advance 3D DDMs and make them useful for digital artists, we require (i) high …
Image super-resolution via iterative refinement
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …
Score-based generative modeling through stochastic differential equations
Creating noise from data is easy; creating data from noise is generative modeling. We
present a stochastic differential equation (SDE) that smoothly transforms a complex data …
present a stochastic differential equation (SDE) that smoothly transforms a complex data …
Rodin: A generative model for sculpting 3d digital avatars using diffusion
This paper presents a 3D diffusion model that automatically generates 3D digital avatars
represented as neural radiance fields (NeRFs). A significant challenge for 3D diffusion is …
represented as neural radiance fields (NeRFs). A significant challenge for 3D diffusion is …
Resshift: Efficient diffusion model for image super-resolution by residual shifting
Diffusion-based image super-resolution (SR) methods are mainly limited by the low
inference speed due to the requirements of hundreds or even thousands of sampling steps …
inference speed due to the requirements of hundreds or even thousands of sampling steps …
Zero-shot text-guided object generation with dream fields
We combine neural rendering with multi-modal image and text representations to synthesize
diverse 3D objects solely from natural language descriptions. Our method, Dream Fields …
diverse 3D objects solely from natural language descriptions. Our method, Dream Fields …