CNN variants for computer vision: History, architecture, application, challenges and future scope

D Bhatt, C Patel, H Talsania, J Patel, R Vaghela… - Electronics, 2021 - mdpi.com
Computer vision is becoming an increasingly trendy word in the area of image processing.
With the emergence of computer vision applications, there is a significant demand to …

Object detection with deep learning: A review

ZQ Zhao, P Zheng, S Xu, X Wu - IEEE transactions on neural …, 2019 - ieeexplore.ieee.org
Due to object detection's close relationship with video analysis and image understanding, it
has attracted much research attention in recent years. Traditional object detection methods …

nuscenes: A multimodal dataset for autonomous driving

H Caesar, V Bankiti, AH Lang, S Vora… - Proceedings of the …, 2020 - openaccess.thecvf.com
Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle
technology. Image based benchmark datasets have driven development in computer vision …

Adaface: Quality adaptive margin for face recognition

M Kim, AK Jain, X Liu - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Recognition in low quality face datasets is challenging because facial attributes are
obscured and degraded. Advances in margin-based loss functions have resulted in …

Arcface: Additive angular margin loss for deep face recognition

J Deng, J Guo, N Xue… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
One of the main challenges in feature learning using Deep Convolutional Neural Networks
(DCNNs) for large-scale face recognition is the design of appropriate loss functions that can …

A survey of the recent architectures of deep convolutional neural networks

A Khan, A Sohail, U Zahoora, AS Qureshi - Artificial intelligence review, 2020 - Springer
Abstract Deep Convolutional Neural Network (CNN) is a special type of Neural Networks,
which has shown exemplary performance on several competitions related to Computer …

Object detection in 20 years: A survey

Z Zou, K Chen, Z Shi, Y Guo, J Ye - Proceedings of the IEEE, 2023 - ieeexplore.ieee.org
Object detection, as of one the most fundamental and challenging problems in computer
vision, has received great attention in recent years. Over the past two decades, we have …

Deep learning for generic object detection: A survey

L Liu, W Ouyang, X Wang, P Fieguth, J Chen… - International journal of …, 2020 - Springer
Object detection, one of the most fundamental and challenging problems in computer vision,
seeks to locate object instances from a large number of predefined categories in natural …

Cosface: Large margin cosine loss for deep face recognition

H Wang, Y Wang, Z Zhou, X Ji… - Proceedings of the …, 2018 - openaccess.thecvf.com
Face recognition has made extraordinary progress owing to the advancement of deep
convolutional neural networks (CNNs). The central task of face recognition, including face …

Vggface2: A dataset for recognising faces across pose and age

Q Cao, L Shen, W **e, OM Parkhi… - 2018 13th IEEE …, 2018 - ieeexplore.ieee.org
In this paper, we introduce a new large-scale face dataset named VGGFace2. The dataset
contains 3.31 million images of 9131 subjects, with an average of 362.6 images for each …