A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference

SX Hu, D Li, J Stühmer, M Kim… - Proceedings of the …, 2022 - openaccess.thecvf.com
Few-shot learning (FSL) is an important and topical problem in computer vision that has
motivated extensive research into numerous methods spanning from sophisticated meta …

Few-shot object detection and viewpoint estimation for objects in the wild

Y **ao, V Lepetit, R Marlet - IEEE transactions on pattern …, 2022 - ieeexplore.ieee.org
Detecting objects and estimating their viewpoints in images are key tasks of 3D scene
understanding. Recent approaches have achieved excellent results on very large …

Meta-learning with task-adaptive loss function for few-shot learning

S Baik, J Choi, H Kim, D Cho, J Min… - Proceedings of the …, 2021 - openaccess.thecvf.com
In few-shot learning scenarios, the challenge is to generalize and perform well on new
unseen examples when only very few labeled examples are available for each task. Model …

Interventional few-shot learning

Z Yue, H Zhang, Q Sun, XS Hua - Advances in neural …, 2020 - proceedings.neurips.cc
We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning (FSL)
methods: the pre-trained knowledge is indeed a confounder that limits the performance. This …

Information maximization for few-shot learning

M Boudiaf, I Ziko, J Rony, J Dolz… - Advances in …, 2020 - proceedings.neurips.cc
Abstract We introduce Transductive Infomation Maximization (TIM) for few-shot learning. Our
method maximizes the mutual information between the query features and their label …

Laplacian regularized few-shot learning

I Ziko, J Dolz, E Granger… - … conference on machine …, 2020 - proceedings.mlr.press
We propose a transductive Laplacian-regularized inference for few-shot tasks. Given any
feature embedding learned from the base classes, we minimize a quadratic binary …

Transductive few-shot learning with prototype-based label propagation by iterative graph refinement

H Zhu, P Koniusz - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
Few-shot learning (FSL) is popular due to its ability to adapt to novel classes. Compared
with inductive few-shot learning, transductive models typically perform better as they …

Adaptive risk minimization: Learning to adapt to domain shift

M Zhang, H Marklund, N Dhawan… - Advances in …, 2021 - proceedings.neurips.cc
A fundamental assumption of most machine learning algorithms is that the training and test
data are drawn from the same underlying distribution. However, this assumption is violated …