Knowledge graphs: Opportunities and challenges

C Peng, F **a, M Naseriparsa, F Osborne - Artificial Intelligence Review, 2023 - Springer
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …

Knowledge graphs and their applications in drug discovery

F MacLean - Expert opinion on drug discovery, 2021 - Taylor & Francis
Introduction Knowledge graphs have proven to be promising systems of information storage
and retrieval. Due to the recent explosion of heterogeneous multimodal data sources …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A generalization of vit/mlp-mixer to graphs

X He, B Hooi, T Laurent, A Perold… - International …, 2023 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …

Ogb-lsc: A large-scale challenge for machine learning on graphs

W Hu, M Fey, H Ren, M Nakata, Y Dong… - arxiv preprint arxiv …, 2021 - arxiv.org
Enabling effective and efficient machine learning (ML) over large-scale graph data (eg,
graphs with billions of edges) can have a great impact on both industrial and scientific …

Open graph benchmark: Datasets for machine learning on graphs

W Hu, M Fey, M Zitnik, Y Dong, H Ren… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …

What is semantic communication? A view on conveying meaning in the era of machine intelligence

Q Lan, D Wen, Z Zhang, Q Zeng, X Chen… - Journal of …, 2021 - ieeexplore.ieee.org
In the 1940s, Claude Shannon developed the information theory focusing on quantifying the
maximum data rate that can be supported by a communication channel. Guided by this …

A survey on graph representation learning methods

S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …

Repurpose open data to discover therapeutics for COVID-19 using deep learning

X Zeng, X Song, T Ma, X Pan, Y Zhou… - Journal of proteome …, 2020 - ACS Publications
There have been more than 2.2 million confirmed cases and over 120 000 deaths from the
human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute …

PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings

M Ali, M Berrendorf, CT Hoyt, L Vermue… - Journal of Machine …, 2021 - jmlr.org
Recently, knowledge graph embeddings (KGEs) have received significant attention, and
several software libraries have been developed for training and evaluation. While each of …