Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Knowledge graphs: Opportunities and challenges
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …
important to organize and represent the enormous volume of knowledge appropriately. As …
Knowledge graphs and their applications in drug discovery
F MacLean - Expert opinion on drug discovery, 2021 - Taylor & Francis
Introduction Knowledge graphs have proven to be promising systems of information storage
and retrieval. Due to the recent explosion of heterogeneous multimodal data sources …
and retrieval. Due to the recent explosion of heterogeneous multimodal data sources …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
A generalization of vit/mlp-mixer to graphs
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …
representation learning. Standard GNNs define a local message-passing mechanism which …
Ogb-lsc: A large-scale challenge for machine learning on graphs
Enabling effective and efficient machine learning (ML) over large-scale graph data (eg,
graphs with billions of edges) can have a great impact on both industrial and scientific …
graphs with billions of edges) can have a great impact on both industrial and scientific …
Open graph benchmark: Datasets for machine learning on graphs
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …
What is semantic communication? A view on conveying meaning in the era of machine intelligence
In the 1940s, Claude Shannon developed the information theory focusing on quantifying the
maximum data rate that can be supported by a communication channel. Guided by this …
maximum data rate that can be supported by a communication channel. Guided by this …
A survey on graph representation learning methods
S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …
goal of graph representation learning is to generate graph representation vectors that …
Repurpose open data to discover therapeutics for COVID-19 using deep learning
There have been more than 2.2 million confirmed cases and over 120 000 deaths from the
human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute …
human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute …
PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings
Recently, knowledge graph embeddings (KGEs) have received significant attention, and
several software libraries have been developed for training and evaluation. While each of …
several software libraries have been developed for training and evaluation. While each of …