[PDF][PDF] Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects

MU Hadi, R Qureshi, A Shah, M Irfan, A Zafar… - Authorea …, 2023 - researchgate.net
Within the vast expanse of computerized language processing, a revolutionary entity known
as Large Language Models (LLMs) has emerged, wielding immense power in its capacity to …

Foundation Models Defining a New Era in Vision: a Survey and Outlook

M Awais, M Naseer, S Khan, RM Anwer… - … on Pattern Analysis …, 2025 - ieeexplore.ieee.org
Vision systems that see and reason about the compositional nature of visual scenes are
fundamental to understanding our world. The complex relations between objects and their …

Segment anything model for medical image analysis: an experimental study

MA Mazurowski, H Dong, H Gu, J Yang, N Konz… - Medical Image …, 2023 - Elsevier
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …

Sam 2: Segment anything in images and videos

N Ravi, V Gabeur, YT Hu, R Hu, C Ryali, T Ma… - arxiv preprint arxiv …, 2024 - arxiv.org
We present Segment Anything Model 2 (SAM 2), a foundation model towards solving
promptable visual segmentation in images and videos. We build a data engine, which …

Multimodal foundation models: From specialists to general-purpose assistants

C Li, Z Gan, Z Yang, J Yang, L Li… - … and Trends® in …, 2024 - nowpublishers.com
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …

U-mamba: Enhancing long-range dependency for biomedical image segmentation

J Ma, F Li, B Wang - arxiv preprint arxiv:2401.04722, 2024 - arxiv.org
Convolutional Neural Networks (CNNs) and Transformers have been the most popular
architectures for biomedical image segmentation, but both of them have limited ability to …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

Medical sam adapter: Adapting segment anything model for medical image segmentation

J Wu, W Ji, Y Liu, H Fu, M Xu, Y Xu, Y ** - arxiv preprint arxiv:2304.12620, 2023 - arxiv.org
The Segment Anything Model (SAM) has recently gained popularity in the field of image
segmentation due to its impressive capabilities in various segmentation tasks and its prompt …

Faster segment anything: Towards lightweight sam for mobile applications

C Zhang, D Han, Y Qiao, JU Kim, SH Bae… - arxiv preprint arxiv …, 2023 - arxiv.org
Segment Anything Model (SAM) has attracted significant attention due to its impressive zero-
shot transfer performance and high versatility for numerous vision applications (like image …

Efficientsam: Leveraged masked image pretraining for efficient segment anything

Y **ong, B Varadarajan, L Wu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract Segment Anything Model (SAM) has emerged as a powerful tool for numerous
vision applications. A key component that drives the impressive performance for zero-shot …