Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions
A critical review of the existing Internal Combustion Engine (ICE) modeling, optimization,
diagnosis, and control challenges and the promising state-of-the-art Machine Learning (ML) …
diagnosis, and control challenges and the promising state-of-the-art Machine Learning (ML) …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …
Deep reinforcement learning for intelligent transportation systems: A survey
Latest technological improvements increased the quality of transportation. New data-driven
approaches bring out a new research direction for all control-based systems, eg, in …
approaches bring out a new research direction for all control-based systems, eg, in …
Deep reinforcement learning for Internet of Things: A comprehensive survey
The incumbent Internet of Things suffers from poor scalability and elasticity exhibiting in
communication, computing, caching and control (4Cs) problems. The recent advances in …
communication, computing, caching and control (4Cs) problems. The recent advances in …
Convergence of edge computing and deep learning: A comprehensive survey
Ubiquitous sensors and smart devices from factories and communities are generating
massive amounts of data, and ever-increasing computing power is driving the core of …
massive amounts of data, and ever-increasing computing power is driving the core of …
A closer look at invalid action masking in policy gradient algorithms
In recent years, Deep Reinforcement Learning (DRL) algorithms have achieved state-of-the-
art performance in many challenging strategy games. Because these games have …
art performance in many challenging strategy games. Because these games have …
Applications of deep reinforcement learning in communications and networking: A survey
This paper presents a comprehensive literature review on applications of deep
reinforcement learning (DRL) in communications and networking. Modern networks, eg …
reinforcement learning (DRL) in communications and networking. Modern networks, eg …
A theoretical analysis of deep Q-learning
Despite the great empirical success of deep reinforcement learning, its theoretical
foundation is less well understood. In this work, we make the first attempt to theoretically …
foundation is less well understood. In this work, we make the first attempt to theoretically …
Challenges of real-world reinforcement learning: definitions, benchmarks and analysis
Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is
beginning to show some successes in real-world scenarios. However, much of the research …
beginning to show some successes in real-world scenarios. However, much of the research …
Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks
Wireless powered mobile-edge computing (MEC) has recently emerged as a promising
paradigm to enhance the data processing capability of low-power networks, such as …
paradigm to enhance the data processing capability of low-power networks, such as …