Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes

CD Quilty, D Wu, W Li, DC Bock, L Wang… - Chemical …, 2023 - ACS Publications
Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are
ubiquitous in contemporary society with the widespread deployment of portable electronic …

High-voltage liquid electrolytes for Li batteries: progress and perspectives

X Fan, C Wang - Chemical Society Reviews, 2021 - pubs.rsc.org
Since the advent of the Li ion batteries (LIBs), the energy density has been tripled, mainly
attributed to the increase of the electrode capacities. Now, the capacity of transition metal …

Challenges and opportunities to mitigate the catastrophic thermal runaway of high‐energy batteries

Y Wang, X Feng, W Huang, X He… - Advanced Energy …, 2023 - Wiley Online Library
Li‐ion batteries (LIBs) that promise both safety and high energy density are critical for a new‐
energy future. However, recent studies on battery thermal runaway (TR) suggest that the …

Engineering hosts for Zn anodes in aqueous Zn-ion batteries

Y Zhu, G Liang, X Cui, X Liu, H Zhong, C Zhi… - Energy & …, 2024 - pubs.rsc.org
Aqueous zinc-ion batteries (ZIBs) distinguish themselves among the numerous viable
alternatives to lithium-ion batteries on account of their potential advantages, which …

The passivity of lithium electrodes in liquid electrolytes for secondary batteries

X He, D Bresser, S Passerini, F Baakes… - Nature Reviews …, 2021 - nature.com
Rechargeable Li metal batteries are currently limited by safety concerns, continuous
electrolyte decomposition and rapid consumption of Li. These issues are mainly related to …

Multifunctional electrolyte additives for better metal batteries

Y Zhu, M Ge, F Ma, Q Wang… - Advanced Functional …, 2024 - Wiley Online Library
The high energy density of rechargeable metal (Li, Na, and Zn) batteries has garnered a lot
of interest. However, the poor cycle stability and low Coulomb efficiency (CE), which are …

Lithium-ion batteries–Current state of the art and anticipated developments

M Armand, P Axmann, D Bresser, M Copley… - Journal of Power …, 2020 - Elsevier
Lithium-ion batteries are the state-of-the-art electrochemical energy storage technology for
mobile electronic devices and electric vehicles. Accordingly, they have attracted a …

Toward Direct Regeneration of Spent Lithium-Ion Batteries: A Next-Generation Recycling Method

J Wang, J Ma, Z Zhuang, Z Liang, K Jia, G Ji… - Chemical …, 2024 - ACS Publications
The popularity of portable electronic devices and electric vehicles has led to the drastically
increasing consumption of lithium-ion batteries recently, raising concerns about the disposal …

Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances

B Wu, C Chen, LHJ Raijmakers, J Liu, DL Danilov… - Energy Storage …, 2023 - Elsevier
Li-metal battery systems are attractive for next-generation high-energy batteries due to their
high theoretical specific capacity and Li-metal's low redox potential. Anode-free Li-metal …

The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites

J Asenbauer, T Eisenmann, M Kuenzel… - Sustainable Energy & …, 2020 - pubs.rsc.org
Lithium-ion batteries are nowadays playing a pivotal role in our everyday life thanks to their
excellent rechargeability, suitable power density, and outstanding energy density. A key …