Causal inference for time series

J Runge, A Gerhardus, G Varando, V Eyring… - Nature Reviews Earth & …, 2023 - nature.com
Many research questions in Earth and environmental sciences are inherently causal,
requiring robust analyses to establish whether and how changes in one variable cause …

Discovering causal relations and equations from data

G Camps-Valls, A Gerhardus, U Ninad, G Varando… - Physics Reports, 2023 - Elsevier
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …

Causal reasoning and large language models: Opening a new frontier for causality

E Kiciman, R Ness, A Sharma, C Tan - Transactions on Machine …, 2023 - openreview.net
The causal capabilities of large language models (LLMs) are a matter of significant debate,
with critical implications for the use of LLMs in societally impactful domains such as …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Causal machine learning: A survey and open problems

J Kaddour, A Lynch, Q Liu, MJ Kusner… - arxiv preprint arxiv …, 2022 - arxiv.org
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …

A survey of Bayesian Network structure learning

NK Kitson, AC Constantinou, Z Guo, Y Liu… - Artificial Intelligence …, 2023 - Springer
Abstract Bayesian Networks (BNs) have become increasingly popular over the last few
decades as a tool for reasoning under uncertainty in fields as diverse as medicine, biology …

D'ya like dags? a survey on structure learning and causal discovery

MJ Vowels, NC Camgoz, R Bowden - ACM Computing Surveys, 2022 - dl.acm.org
Causal reasoning is a crucial part of science and human intelligence. In order to discover
causal relationships from data, we need structure discovery methods. We provide a review …

Iterative deep graph learning for graph neural networks: Better and robust node embeddings

Y Chen, L Wu, M Zaki - Advances in neural information …, 2020 - proceedings.neurips.cc
In this paper, we propose an end-to-end graph learning framework, namely\textbf {I}
terative\textbf {D} eep\textbf {G} raph\textbf {L} earning (\alg), for jointly and iteratively …

Weakly supervised causal representation learning

J Brehmer, P De Haan, P Lippe… - Advances in Neural …, 2022 - proceedings.neurips.cc
Learning high-level causal representations together with a causal model from unstructured
low-level data such as pixels is impossible from observational data alone. We prove under …

Nonparametric identifiability of causal representations from unknown interventions

J von Kügelgen, M Besserve… - Advances in …, 2023 - proceedings.neurips.cc
We study causal representation learning, the task of inferring latent causal variables and
their causal relations from high-dimensional functions (“mixtures”) of the variables. Prior …