Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Causal inference for time series
Many research questions in Earth and environmental sciences are inherently causal,
requiring robust analyses to establish whether and how changes in one variable cause …
requiring robust analyses to establish whether and how changes in one variable cause …
Discovering causal relations and equations from data
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …
questions about why natural phenomena occur and to make testable models that explain the …
Causal reasoning and large language models: Opening a new frontier for causality
The causal capabilities of large language models (LLMs) are a matter of significant debate,
with critical implications for the use of LLMs in societally impactful domains such as …
with critical implications for the use of LLMs in societally impactful domains such as …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Causal machine learning: A survey and open problems
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …
that formalize the data-generation process as a structural causal model (SCM). This …
A survey of Bayesian Network structure learning
Abstract Bayesian Networks (BNs) have become increasingly popular over the last few
decades as a tool for reasoning under uncertainty in fields as diverse as medicine, biology …
decades as a tool for reasoning under uncertainty in fields as diverse as medicine, biology …
D'ya like dags? a survey on structure learning and causal discovery
Causal reasoning is a crucial part of science and human intelligence. In order to discover
causal relationships from data, we need structure discovery methods. We provide a review …
causal relationships from data, we need structure discovery methods. We provide a review …
Iterative deep graph learning for graph neural networks: Better and robust node embeddings
In this paper, we propose an end-to-end graph learning framework, namely\textbf {I}
terative\textbf {D} eep\textbf {G} raph\textbf {L} earning (\alg), for jointly and iteratively …
terative\textbf {D} eep\textbf {G} raph\textbf {L} earning (\alg), for jointly and iteratively …
Weakly supervised causal representation learning
Learning high-level causal representations together with a causal model from unstructured
low-level data such as pixels is impossible from observational data alone. We prove under …
low-level data such as pixels is impossible from observational data alone. We prove under …
Nonparametric identifiability of causal representations from unknown interventions
We study causal representation learning, the task of inferring latent causal variables and
their causal relations from high-dimensional functions (“mixtures”) of the variables. Prior …
their causal relations from high-dimensional functions (“mixtures”) of the variables. Prior …