Artificial intelligence for geoscience: Progress, challenges and perspectives

T Zhao, S Wang, C Ouyang, M Chen, C Liu, J Zhang… - The Innovation, 2024 - cell.com
This paper explores the evolution of geoscientific inquiry, tracing the progression from
traditional physics-based models to modern data-driven approaches facilitated by significant …

Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges

A Aldoseri, KN Al-Khalifa, AM Hamouda - Applied Sciences, 2023 - mdpi.com
The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of …

A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics

E Haghighat, M Raissi, A Moure, H Gomez… - Computer Methods in …, 2021 - Elsevier
We present the application of a class of deep learning, known as Physics Informed Neural
Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how …

Deep learning for geophysics: Current and future trends

S Yu, J Ma - Reviews of Geophysics, 2021 - Wiley Online Library
Recently deep learning (DL), as a new data‐driven technique compared to conventional
approaches, has attracted increasing attention in geophysical community, resulting in many …

Big Data in Earth system science and progress towards a digital twin

X Li, M Feng, Y Ran, Y Su, F Liu, C Huang… - Nature Reviews Earth & …, 2023 - nature.com
The concept of a digital twin of Earth envisages the convergence of Big Earth Data with
physics-based models in an interactive computational framework that enables monitoring …

Iterative integration of deep learning in hybrid Earth surface system modelling

M Chen, Z Qian, N Boers, AJ Jakeman… - Nature Reviews Earth & …, 2023 - nature.com
Earth system modelling (ESM) is essential for understanding past, present and future Earth
processes. Deep learning (DL), with the data-driven strength of neural networks, has …

Machine learning and landslide studies: recent advances and applications

FS Tehrani, M Calvello, Z Liu, L Zhang, S Lacasse - Natural Hazards, 2022 - Springer
Upon the introduction of machine learning (ML) and its variants, in the form that we know
today, to the landslide community, many studies have been carried out to explore the …

Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversionsFree GPT-4

M Rasht‐Behesht, C Huber, K Shukla… - Journal of …, 2022 - Wiley Online Library
We propose a new approach to the solution of the wave propagation and full waveform
inversions (FWIs) based on a recent advance in deep learning called physics‐informed …

[HTML][HTML] Deep learning for geological hazards analysis: Data, models, applications, and opportunities

Z Ma, G Mei - Earth-Science Reviews, 2021 - Elsevier
As natural disasters are induced by geodynamic activities or abnormal changes in the
environment, geological hazards tend to wreak havoc on the environment and human …

Machine learning in natural and engineered water systems

R Huang, C Ma, J Ma, X Huangfu, Q He - Water Research, 2021 - Elsevier
Water resources of desired quality and quantity are the foundation for human survival and
sustainable development. To better protect the water environment and conserve water …