Biological underpinnings for lifelong learning machines

D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges

T Lesort, V Lomonaco, A Stoian, D Maltoni, D Filliat… - Information fusion, 2020 - Elsevier
Continual learning (CL) is a particular machine learning paradigm where the data
distribution and learning objective change through time, or where all the training data and …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Dualprompt: Complementary prompting for rehearsal-free continual learning

Z Wang, Z Zhang, S Ebrahimi, R Sun, H Zhang… - European conference on …, 2022 - Springer
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …

Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning

JS Smith, L Karlinsky, V Gutta… - Proceedings of the …, 2023 - openaccess.thecvf.com
Computer vision models suffer from a phenomenon known as catastrophic forgetting when
learning novel concepts from continuously shifting training data. Typical solutions for this …

Sam-clip: Merging vision foundation models towards semantic and spatial understanding

H Wang, PKA Vasu, F Faghri… - Proceedings of the …, 2024 - openaccess.thecvf.com
The landscape of publicly available vision foundation models (VFMs) such as CLIP and
SAM is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their …

Learning to prompt for continual learning

Z Wang, Z Zhang, CY Lee, H Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The mainstream paradigm behind continual learning has been to adapt the model
parameters to non-stationary data distributions, where catastrophic forgetting is the central …

Online continual learning in image classification: An empirical survey

Z Mai, R Li, J Jeong, D Quispe, H Kim, S Sanner - Neurocomputing, 2022 - Elsevier
Online continual learning for image classification studies the problem of learning to classify
images from an online stream of data and tasks, where tasks may include new classes …

Always be dreaming: A new approach for data-free class-incremental learning

J Smith, YC Hsu, J Balloch, Y Shen… - Proceedings of the …, 2021 - openaccess.thecvf.com
Modern computer vision applications suffer from catastrophic forgetting when incrementally
learning new concepts over time. The most successful approaches to alleviate this forgetting …

Introducing language guidance in prompt-based continual learning

MGZA Khan, MF Naeem, L Van Gool… - Proceedings of the …, 2023 - openaccess.thecvf.com
Continual Learning aims to learn a single model on a sequence of tasks without having
access to data from previous tasks. The biggest challenge in the domain still remains …