Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Biological underpinnings for lifelong learning machines
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges
Continual learning (CL) is a particular machine learning paradigm where the data
distribution and learning objective change through time, or where all the training data and …
distribution and learning objective change through time, or where all the training data and …
Three types of incremental learning
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
Dualprompt: Complementary prompting for rehearsal-free continual learning
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …
Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning
Computer vision models suffer from a phenomenon known as catastrophic forgetting when
learning novel concepts from continuously shifting training data. Typical solutions for this …
learning novel concepts from continuously shifting training data. Typical solutions for this …
Sam-clip: Merging vision foundation models towards semantic and spatial understanding
The landscape of publicly available vision foundation models (VFMs) such as CLIP and
SAM is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their …
SAM is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their …
Learning to prompt for continual learning
The mainstream paradigm behind continual learning has been to adapt the model
parameters to non-stationary data distributions, where catastrophic forgetting is the central …
parameters to non-stationary data distributions, where catastrophic forgetting is the central …
Online continual learning in image classification: An empirical survey
Online continual learning for image classification studies the problem of learning to classify
images from an online stream of data and tasks, where tasks may include new classes …
images from an online stream of data and tasks, where tasks may include new classes …
Always be dreaming: A new approach for data-free class-incremental learning
Modern computer vision applications suffer from catastrophic forgetting when incrementally
learning new concepts over time. The most successful approaches to alleviate this forgetting …
learning new concepts over time. The most successful approaches to alleviate this forgetting …
Introducing language guidance in prompt-based continual learning
Continual Learning aims to learn a single model on a sequence of tasks without having
access to data from previous tasks. The biggest challenge in the domain still remains …
access to data from previous tasks. The biggest challenge in the domain still remains …