A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …
from society. As a result, many individuals have become interested in related resources and …
Knowledge graphs: Opportunities and challenges
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …
important to organize and represent the enormous volume of knowledge appropriately. As …
Unifying large language models and knowledge graphs: A roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the
field of natural language processing and artificial intelligence, due to their emergent ability …
field of natural language processing and artificial intelligence, due to their emergent ability …
Deep bidirectional language-knowledge graph pretraining
Pretraining a language model (LM) on text has been shown to help various downstream
NLP tasks. Recent works show that a knowledge graph (KG) can complement text data …
NLP tasks. Recent works show that a knowledge graph (KG) can complement text data …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
A survey on knowledge graphs: Representation, acquisition, and applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that
represent structural relations between entities have become an increasingly popular …
represent structural relations between entities have become an increasingly popular …
SimKGC: Simple contrastive knowledge graph completion with pre-trained language models
Knowledge graph completion (KGC) aims to reason over known facts and infer the missing
links. Text-based methods such as KGBERT (Yao et al., 2019) learn entity representations …
links. Text-based methods such as KGBERT (Yao et al., 2019) learn entity representations …
A survey of knowledge enhanced pre-trained language models
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-
supervised learning method, have yielded promising performance on various tasks in …
supervised learning method, have yielded promising performance on various tasks in …
Making large language models perform better in knowledge graph completion
Large language model (LLM) based knowledge graph completion (KGC) aims to predict the
missing triples in the KGs with LLMs. However, research about LLM-based KGC fails to …
missing triples in the KGs with LLMs. However, research about LLM-based KGC fails to …
A review on language models as knowledge bases
Recently, there has been a surge of interest in the NLP community on the use of pretrained
Language Models (LMs) as Knowledge Bases (KBs). Researchers have shown that LMs …
Language Models (LMs) as Knowledge Bases (KBs). Researchers have shown that LMs …