Sustainable use of chemically modified tyre rubber in concrete: Machine learning based novel predictive model

P Li, MA Khan, AM Galal, HH Awan, A Zafar… - Chemical Physics …, 2022 - Elsevier
To encourage the consumption of crumb rubber (CR), gene expression programming (GEP)
has been exercised in this paper to establish empirical models for estimation of mechanical …

A scientometrics review of soil properties prediction using soft computing approaches

J Khatti, KS Grover - Archives of Computational Methods in Engineering, 2024 - Springer
In this world, several types of soils are available with their different engineering properties.
Determining each soil's engineering properties is difficult because the laboratory procedures …

Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis

AA Alabdullah, M Iqbal, M Zahid, K Khan… - … and Building Materials, 2022 - Elsevier
This study investigates the non-linear capabilities of two machine learning prediction
models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride …

[HTML][HTML] Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models

J Khatti, KS Grover - Journal of Rock Mechanics and Geotechnical …, 2023 - Elsevier
A comparison between deep learning and standalone models in predicting the compaction
parameters of soil is presented in this research. One hundred and ninety and fifty-three soil …

[HTML][HTML] Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer

S Nazar, J Yang, MN Amin, K Khan, M Ashraf… - Journal of Materials …, 2023 - Elsevier
This study used three artificial intelligence-based algorithms–adaptive neuro-fuzzy inference
system (ANFIS), artificial neural networks (ANNs), and gene expression programming (GEP) …

New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms

MA Khan, F Aslam, MF Javed, H Alabduljabbar… - Journal of Cleaner …, 2022 - Elsevier
Bio-composites have become the prime material selection for green concrete because of the
increasing awareness of environmental issues. Due to their highly heterogenous nature …

[HTML][HTML] Smart prediction of liquefaction-induced lateral spreading

MNA Raja, T Abdoun, W El-Sekelly - Journal of Rock Mechanics and …, 2024 - Elsevier
The prediction of liquefaction-induced lateral spreading/displacement (D h) is a challenging
task for civil/geotechnical engineers. In this study, a new approach is proposed to predict D h …

[HTML][HTML] Optimizing durability assessment: Machine learning models for depth of wear of environmentally-friendly concrete

M Khan, AU Khan, M Houda, C El Hachem… - Results in …, 2023 - Elsevier
The use of fly ash in cementitious composites has gained popularity. However, assessing
the depth of wear (DW) of concrete requires expensive and destructive laboratory tests …

[HTML][HTML] Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures

R Alyousef, MF Rehman, M Khan, M Fawad… - Case Studies in …, 2023 - Elsevier
Steel-fiber-reinforced concrete (SFRC) has emerged as a viable and efficient substitute for
traditional concrete in the construction industry. By incorporating steel fibers into the …