A critical review on modeling and prediction on properties of fresh and hardened geopolymer composites

P Zhang, Y Mao, W Yuan, J Zheng, S Hu… - Journal of Building …, 2024 - Elsevier
Geopolymer is an environmentally friendly material that is recognized as a potential
alternative binder to ordinary Portland cement. However, accurate prediction of the …

A scientometrics review of soil properties prediction using soft computing approaches

J Khatti, KS Grover - Archives of Computational Methods in Engineering, 2024 - Springer
In this world, several types of soils are available with their different engineering properties.
Determining each soil's engineering properties is difficult because the laboratory procedures …

Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis

AA Alabdullah, M Iqbal, M Zahid, K Khan… - … and Building Materials, 2022 - Elsevier
This study investigates the non-linear capabilities of two machine learning prediction
models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride …

Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches

A Aldrees, M Khan, ATB Taha, M Ali - Journal of Water Process …, 2024 - Elsevier
Water quality indexes (WQI) are pivotal in assessing aquatic systems. Conventional
modeling approaches rely on extensive datasets with numerous unspecified inputs, leading …

[HTML][HTML] Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms

M Alyami, M Khan, M Fawad, R Nawaz… - Case Studies in …, 2024 - Elsevier
Abstract Three-dimensional (3D) printing in the construction industry is growing rapidly due
to its inherent advantages, including intricate geometries, reduced waste, accelerated …

[HTML][HTML] Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models

M Alyami, M Khan, AWA Hammad… - Case Studies in …, 2024 - Elsevier
The construction sector is a major contributor to global greenhouse gas emissions. Using
recycled and waste materials in concrete is a practical solution to address environmental …

[HTML][HTML] Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models

J Khatti, KS Grover - Journal of Rock Mechanics and Geotechnical …, 2023 - Elsevier
A comparison between deep learning and standalone models in predicting the compaction
parameters of soil is presented in this research. One hundred and ninety and fifty-three soil …

[HTML][HTML] Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer

S Nazar, J Yang, MN Amin, K Khan, M Ashraf… - Journal of Materials …, 2023 - Elsevier
This study used three artificial intelligence-based algorithms–adaptive neuro-fuzzy inference
system (ANFIS), artificial neural networks (ANNs), and gene expression programming (GEP) …

[HTML][HTML] Optimizing durability assessment: Machine learning models for depth of wear of environmentally-friendly concrete

M Khan, AU Khan, M Houda, C El Hachem… - Results in …, 2023 - Elsevier
The use of fly ash in cementitious composites has gained popularity. However, assessing
the depth of wear (DW) of concrete requires expensive and destructive laboratory tests …

[HTML][HTML] Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures

R Alyousef, MF Rehman, M Khan, M Fawad… - Case Studies in …, 2023 - Elsevier
Steel-fiber-reinforced concrete (SFRC) has emerged as a viable and efficient substitute for
traditional concrete in the construction industry. By incorporating steel fibers into the …