Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Quantum science with optical tweezer arrays of ultracold atoms and molecules
AM Kaufman, KK Ni - Nature Physics, 2021 - nature.com
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Quantum networks with neutral atom processing nodes
Quantum networks providing shared entanglement over a mesh of quantum nodes will
revolutionize the field of quantum information science by offering novel applications in …
revolutionize the field of quantum information science by offering novel applications in …
High-fidelity gates and mid-circuit erasure conversion in an atomic qubit
The development of scalable, high-fidelity qubits is a key challenge in quantum information
science. Neutral atom qubits have progressed rapidly in recent years, demonstrating …
science. Neutral atom qubits have progressed rapidly in recent years, demonstrating …
Multi-qubit gates and Schrödinger cat states in an optical clock
Many-particle entanglement is a key resource for achieving the fundamental precision limits
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
Midcircuit Operations Using the omg Architecture in Neutral Atom Arrays
JW Lis, A Senoo, WF McGrew, F Rönchen, A Jenkins… - Physical Review X, 2023 - APS
Midcircuit operations, such as qubit state measurement or reset, are central to many tasks in
quantum information science, including quantum computing, entanglement generation, and …
quantum information science, including quantum computing, entanglement generation, and …
Realizing spin squeezing with Rydberg interactions in an optical clock
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying
quantum physics, combining precise single-particle control and detection with a range of …
quantum physics, combining precise single-particle control and detection with a range of …
Scalable spin squeezing in a dipolar Rydberg atom array
The standard quantum limit bounds the precision of measurements that can be achieved by
ensembles of uncorrelated particles. Fundamentally, this limit arises from the non …
ensembles of uncorrelated particles. Fundamentally, this limit arises from the non …
Quantum phases of matter on a 256-atom programmable quantum simulator
Motivated by far-reaching applications ranging from quantum simulations of complex
processes in physics and chemistry to quantum information processing, a broad effort is …
processes in physics and chemistry to quantum information processing, a broad effort is …
Midcircuit Qubit Measurement and Rearrangement in a Atomic Array
Measurement-based quantum error correction relies on the ability to determine the state of a
subset of qubits (ancillas) within a processor without revealing or disturbing the state of the …
subset of qubits (ancillas) within a processor without revealing or disturbing the state of the …
Universal quantum operations and ancilla-based read-out for tweezer clocks
Enhancing the precision of measurements by harnessing entanglement is a long-sought
goal in quantum metrology,. Yet attaining the best sensitivity allowed by quantum theory in …
goal in quantum metrology,. Yet attaining the best sensitivity allowed by quantum theory in …