[HTML][HTML] A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives

B Peccerillo, M Mannino, A Mondelli… - Journal of Systems …, 2022 - Elsevier
In recent years, the limits of the multicore approach emerged in the so-called “dark silicon”
issue and diminishing returns of an ever-increasing core count. Hardware manufacturers …

A critical review of the enhanced recovery of rare earth elements from phosphogypsum

G **e, Q Guan, F Zhou, W Yu, Z Yin, H Tang, Z Zhang… - Molecules, 2023 - mdpi.com
The increasing demand for rare earth elements (REEs), especially from new and innovative
technology, has strained their supply, which makes the exploration of new REE sources …

A modern primer on processing in memory

O Mutlu, S Ghose, J Gómez-Luna… - … computing: from devices …, 2022 - Springer
Modern computing systems are overwhelmingly designed to move data to computation. This
design choice goes directly against at least three key trends in computing that cause …

AWB-GCN: A graph convolutional network accelerator with runtime workload rebalancing

T Geng, A Li, R Shi, C Wu, T Wang, Y Li… - 2020 53rd Annual …, 2020 - ieeexplore.ieee.org
Deep learning systems have been successfully applied to Euclidean data such as images,
video, and audio. In many applications, however, information and their relationships are …

Benchmarking a new paradigm: Experimental analysis and characterization of a real processing-in-memory system

J Gómez-Luna, I El Hajj, I Fernandez… - IEEE …, 2022 - ieeexplore.ieee.org
Many modern workloads, such as neural networks, databases, and graph processing, are
fundamentally memory-bound. For such workloads, the data movement between main …

GCNAX: A flexible and energy-efficient accelerator for graph convolutional neural networks

J Li, A Louri, A Karanth… - 2021 IEEE International …, 2021 - ieeexplore.ieee.org
Graph convolutional neural networks (GCNs) have emerged as an effective approach to
extend deep learning for graph data analytics. Given that graphs are usually irregular, as …

Powerlyra: Differentiated graph computation and partitioning on skewed graphs

R Chen, J Shi, Y Chen, B Zang, H Guan… - ACM Transactions on …, 2019 - dl.acm.org
Natural graphs with skewed distributions raise unique challenges to distributed graph
computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” …

Processing-in-memory: A workload-driven perspective

S Ghose, A Boroumand, JS Kim… - IBM Journal of …, 2019 - ieeexplore.ieee.org
Many modern and emerging applications must process increasingly large volumes of data.
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such …

Sisa: Set-centric instruction set architecture for graph mining on processing-in-memory systems

M Besta, R Kanakagiri, G Kwasniewski… - MICRO-54: 54th Annual …, 2021 - dl.acm.org
Simple graph algorithms such as PageRank have been the target of numerous hardware
accelerators. Yet, there also exist much more complex graph mining algorithms for problems …

DAMOV: A new methodology and benchmark suite for evaluating data movement bottlenecks

GF Oliveira, J Gómez-Luna, L Orosa, S Ghose… - IEEE …, 2021 - ieeexplore.ieee.org
Data movement between the CPU and main memory is a first-order obstacle against improv
ing performance, scalability, and energy efficiency in modern systems. Computer systems …