[HTML][HTML] A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives
In recent years, the limits of the multicore approach emerged in the so-called “dark silicon”
issue and diminishing returns of an ever-increasing core count. Hardware manufacturers …
issue and diminishing returns of an ever-increasing core count. Hardware manufacturers …
A critical review of the enhanced recovery of rare earth elements from phosphogypsum
G **e, Q Guan, F Zhou, W Yu, Z Yin, H Tang, Z Zhang… - Molecules, 2023 - mdpi.com
The increasing demand for rare earth elements (REEs), especially from new and innovative
technology, has strained their supply, which makes the exploration of new REE sources …
technology, has strained their supply, which makes the exploration of new REE sources …
A modern primer on processing in memory
Modern computing systems are overwhelmingly designed to move data to computation. This
design choice goes directly against at least three key trends in computing that cause …
design choice goes directly against at least three key trends in computing that cause …
AWB-GCN: A graph convolutional network accelerator with runtime workload rebalancing
Deep learning systems have been successfully applied to Euclidean data such as images,
video, and audio. In many applications, however, information and their relationships are …
video, and audio. In many applications, however, information and their relationships are …
Benchmarking a new paradigm: Experimental analysis and characterization of a real processing-in-memory system
Many modern workloads, such as neural networks, databases, and graph processing, are
fundamentally memory-bound. For such workloads, the data movement between main …
fundamentally memory-bound. For such workloads, the data movement between main …
GCNAX: A flexible and energy-efficient accelerator for graph convolutional neural networks
Graph convolutional neural networks (GCNs) have emerged as an effective approach to
extend deep learning for graph data analytics. Given that graphs are usually irregular, as …
extend deep learning for graph data analytics. Given that graphs are usually irregular, as …
Powerlyra: Differentiated graph computation and partitioning on skewed graphs
R Chen, J Shi, Y Chen, B Zang, H Guan… - ACM Transactions on …, 2019 - dl.acm.org
Natural graphs with skewed distributions raise unique challenges to distributed graph
computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” …
computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” …
Processing-in-memory: A workload-driven perspective
Many modern and emerging applications must process increasingly large volumes of data.
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such …
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such …
Sisa: Set-centric instruction set architecture for graph mining on processing-in-memory systems
Simple graph algorithms such as PageRank have been the target of numerous hardware
accelerators. Yet, there also exist much more complex graph mining algorithms for problems …
accelerators. Yet, there also exist much more complex graph mining algorithms for problems …
DAMOV: A new methodology and benchmark suite for evaluating data movement bottlenecks
Data movement between the CPU and main memory is a first-order obstacle against improv
ing performance, scalability, and energy efficiency in modern systems. Computer systems …
ing performance, scalability, and energy efficiency in modern systems. Computer systems …