A critical review on the progress of kesterite solar cells: Current strategies and insights

A Wang, M He, MA Green, K Sun… - Advanced Energy …, 2023 - Wiley Online Library
Abstract Kesterite Cu2ZnSn (S, Se) 4 (CZTSSe) with earth‐abundant and environmental‐
benign constituents has been regarded as a promising solar energy harvesting material for …

Perovskite tandem solar cells: from fundamentals to commercial deployment

H Li, W Zhang - Chemical Reviews, 2020 - ACS Publications
Multi-junction (tandem) solar cells (TSCs) consisting of multiple light absorbers with
considerably different band gaps show great potential in breaking the Shockley–Queisser (S …

Emerging chalcogenide thin films for solar energy harvesting devices

S Hadke, M Huang, C Chen, YF Tay, S Chen… - Chemical …, 2021 - ACS Publications
Chalcogenide semiconductors offer excellent optoelectronic properties for their use in solar
cells, exemplified by the commercialization of Cu (In, Ga) Se2-and CdTe-based photovoltaic …

Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells

J Li, J Huang, F Ma, H Sun, J Cong, K Privat… - Nature Energy, 2022 - nature.com
Understanding carrier loss mechanisms at microscopic regions is imperative for the
development of high-performance polycrystalline inorganic thin-film solar cells. Despite the …

Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells

J Wang, J Zhou, X Xu, F Meng, C **ang… - Advanced …, 2022 - Wiley Online Library
Aiming at a large open‐circuit voltage (VOC) deficit in Cu2ZnSn (S, Se) 4 (CZTSSe) solar
cells, a new and effective strategy to simultaneously regulate the back interface and restrain …

Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review

K Kaur, M Kumar - Journal of Materials Chemistry A, 2020 - pubs.rsc.org
CZTSSe solar cells are considered to be potential and cost-effective alternative solutions to
mature photovoltaic technology for meeting future energy demands. However, the current …

Defect suppression for high-efficiency kesterite CZTSSe solar cells: advances and prospects

H Wei, Y Li, C Cui, X Wang, Z Shao, S Pang… - Chemical Engineering …, 2023 - Elsevier
Comprising of earth-abundant, inexpensive, and environmentally friendly elements, kesterite
Cu 2 ZnSn (S, Se) 4 (CZTSSe) solar cells are demonstrated to have enormous potential to …

Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer

MS Rana, MM Islam, M Julkarnain - Solar Energy, 2021 - Elsevier
Abstract Copper Zinc Tin Sulphide (CZTS) thin film solar cell achieved a great attention of
researchers due to its optimum direct energy gap, higher absorption coefficient and good …

A progress review on the modification of CZTS (e)-based thin-film solar cells

HS Nugroho, G Refantero, NLW Septiani… - Journal of Industrial and …, 2022 - Elsevier
The increasing demand for energy in recent decades due to rapid industrial and population
growth has resulted in a heavy dependence on non-renewable energy which leads to …

Gradient Conduction Band Energy Engineering Driven High‐Efficiency Solution‐Processed Cu2ZnSn(S,Se)4/ZnxCd1–x S Solar Cells

Z Xu, Q Gao, C Cui, S Yuan, D Kou… - Advanced Functional …, 2023 - Wiley Online Library
The photovoltaic performance of the environmentally friendly Cu2ZnSn (S, Se) 4 (CZTSSe)
solar cells is lower than its predecessor Cu (In, Ga) Se2 solar cells. Severe carrier …