Enhancing computational fluid dynamics with machine learning

R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …

Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arxiv preprint arxiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …

Machine learning: new ideas and tools in environmental science and engineering

S Zhong, K Zhang, M Bagheri, JG Burken… - … science & technology, 2021 - ACS Publications
The rapid increase in both the quantity and complexity of data that are being generated daily
in the field of environmental science and engineering (ESE) demands accompanied …

Explainable machine learning for scientific insights and discoveries

R Roscher, B Bohn, MF Duarte, J Garcke - Ieee Access, 2020 - ieeexplore.ieee.org
Machine learning methods have been remarkably successful for a wide range of application
areas in the extraction of essential information from data. An exciting and relatively recent …

Machine learning for fluid mechanics

SL Brunton, BR Noack… - Annual review of fluid …, 2020 - annualreviews.org
The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data
from experiments, field measurements, and large-scale simulations at multiple …

B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data

L Yang, X Meng, GE Karniadakis - Journal of Computational Physics, 2021 - Elsevier
We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward
and inverse nonlinear problems described by partial differential equations (PDEs) and noisy …

Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data

L Sun, H Gao, S Pan, JX Wang - Computer Methods in Applied Mechanics …, 2020 - Elsevier
Numerical simulations on fluid dynamics problems primarily rely on spatially or/and
temporally discretization of the governing equation using polynomials into a finite …

Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

Pdebench: An extensive benchmark for scientific machine learning

M Takamoto, T Praditia, R Leiteritz… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Machine learning-based modeling of physical systems has experienced increased
interest in recent years. Despite some impressive progress, there is still a lack of …

Machine learning in aerodynamic shape optimization

J Li, X Du, JRRA Martins - Progress in Aerospace Sciences, 2022 - Elsevier
Abstract Machine learning (ML) has been increasingly used to aid aerodynamic shape
optimization (ASO), thanks to the availability of aerodynamic data and continued …