Cobalt‐free cathode materials: families and their prospects

H Zhao, WYA Lam, L Sheng, L Wang… - Advanced Energy …, 2022 - Wiley Online Library
With the rapid growth of global electro‐mobility, the demand for cobalt is rapidly increasing
because it is currently an indispensable component of the cathode materials in lithium‐ion …

Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques

W Zuo, M Luo, X Liu, J Wu, H Liu, J Li… - Energy & …, 2020 - pubs.rsc.org
Due to their high specific capacities beyond 250 mA hg− 1, lithium-rich oxides have been
considered as promising cathodes for the next generation power batteries, bridging the …

A Li-rich layered oxide cathode with negligible voltage decay

D Luo, H Zhu, Y **a, Z Yin, Y Qin, T Li, Q Zhang, L Gu… - Nature Energy, 2023 - nature.com
With high capacity at low cost, Li-and Mn-rich (LMR) layered oxides are a promising class of
cathodes for next-generation Li-ion batteries. However, substantial voltage decay during …

Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy

Q Li, D Ning, D Wong, K An, Y Tang, D Zhou… - Nature …, 2022 - nature.com
The oxygen redox reaction in lithium-rich layered oxide battery cathode materials generates
extra capacity at high cell voltages (ie,> 4.5 V). However, the irreversible oxygen release …

Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes

RJ Clément, Z Lun, G Ceder - Energy & Environmental Science, 2020 - pubs.rsc.org
For lithium-ion rechargeable batteries to meet society's ever-growing demands in electrical
energy storage, eg for the electrification of transportation, for portable electronics and for grid …

Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes

D Eum, B Kim, SJ Kim, H Park, J Wu, SP Cho, G Yoon… - Nature Materials, 2020 - nature.com
Despite the high energy density of lithium-rich layered-oxide electrodes, their real-world
implementation in batteries is hindered by the substantial voltage decay on cycling. This …

High-voltage positive electrode materials for lithium-ion batteries

W Li, B Song, A Manthiram - Chemical Society Reviews, 2017 - pubs.rsc.org
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable
electronics and electric vehicles has spurred intensive research efforts over the past decade …

Injection of oxygen vacancies in the bulk lattice of layered cathodes

P Yan, J Zheng, ZK Tang, A Devaraj, G Chen… - Nature …, 2019 - nature.com
Surfaces, interfaces and grain boundaries are classically known to be sinks of defects
generated within the bulk lattice. Here, we report an inverse case by which the defects …

Persistent and partially mobile oxygen vacancies in Li-rich layered oxides

PM Csernica, SS Kalirai, WE Gent, K Lim, YS Yu, Y Liu… - Nature Energy, 2021 - nature.com
Increasing the energy density of layered oxide battery electrodes is challenging as
accessing high states of delithiation often triggers voltage degradation and oxygen release …

Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides

J Hong, WE Gent, P **ao, K Lim, DH Seo, J Wu… - Nature materials, 2019 - nature.com
Reversible high-voltage redox chemistry is an essential component of many electrochemical
technologies, from (electro) catalysts to lithium-ion batteries. Oxygen-anion redox has …