A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

A comprehensive survey on source-free domain adaptation

J Li, Z Yu, Z Du, L Zhu, HT Shen - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Over the past decade, domain adaptation has become a widely studied branch of transfer
learning which aims to improve performance on target domains by leveraging knowledge …

Source-free domain adaptation via distribution estimation

N Ding, Y Xu, Y Tang, C Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Domain Adaptation aims to transfer the knowledge learned from a labeled source
domain to an unlabeled target domain whose data distributions are different. However, the …

Source-free unsupervised domain adaptation: A survey

Y Fang, PT Yap, W Lin, H Zhu, M Liu - Neural Networks, 2024 - Elsevier
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention
for tackling domain-shift problems caused by distribution discrepancy across different …

C-sfda: A curriculum learning aided self-training framework for efficient source free domain adaptation

N Karim, NC Mithun, A Rajvanshi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Unsupervised domain adaptation (UDA) approaches focus on adapting models trained on a
labeled source domain to an unlabeled target domain. In contrast to UDA, source-free …

Balancing discriminability and transferability for source-free domain adaptation

JN Kundu, AR Kulkarni, S Bhambri… - International …, 2022 - proceedings.mlr.press
Conventional domain adaptation (DA) techniques aim to improve domain transferability by
learning domain-invariant representations; while concurrently preserving the task …

Uncertainty-guided source-free domain adaptation

S Roy, M Trapp, A Pilzer, J Kannala, N Sebe… - European conference on …, 2022 - Springer
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target
data set by only using a pre-trained source model. However, the absence of the source data …

Advancing 3D point cloud understanding through deep transfer learning: A comprehensive survey

SS Sohail, Y Himeur, H Kheddar, A Amira, F Fadli… - Information …, 2024 - Elsevier
The 3D point cloud (3DPC) has significantly evolved and benefited from the advance of
deep learning (DL). However, the latter faces various issues, including the lack of data or …

Class relationship embedded learning for source-free unsupervised domain adaptation

Y Zhang, Z Wang, W He - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
This work focuses on a practical knowledge transfer task defined as Source-Free
Unsupervised Domain Adaptation (SFUDA), where only a well-trained source model and …

Lead: Learning decomposition for source-free universal domain adaptation

S Qu, T Zou, L He, F Röhrbein, A Knoll… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract Universal Domain Adaptation (UniDA) targets knowledge transfer in the presence
of both covariate and label shifts. Recently Source-free Universal Domain Adaptation (SF …