Exploration in deep reinforcement learning: A survey

P Ladosz, L Weng, M Kim, H Oh - Information Fusion, 2022 - Elsevier
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …

Deep reinforcement learning: a survey

H Wang, N Liu, Y Zhang, D Feng, F Huang, D Li… - Frontiers of Information …, 2020 - Springer
Deep reinforcement learning (RL) has become one of the most popular topics in artificial
intelligence research. It has been widely used in various fields, such as end-to-end control …

Affordances from human videos as a versatile representation for robotics

S Bahl, R Mendonca, L Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Building a robot that can understand and learn to interact by watching humans has inspired
several vision problems. However, despite some successful results on static datasets, it …

Agent57: Outperforming the atari human benchmark

AP Badia, B Piot, S Kapturowski… - International …, 2020 - proceedings.mlr.press
Atari games have been a long-standing benchmark in the reinforcement learning (RL)
community for the past decade. This benchmark was proposed to test general competency …

Generative modeling by estimating gradients of the data distribution

Y Song, S Ermon - Advances in neural information …, 2019 - proceedings.neurips.cc
We introduce a new generative model where samples are produced via Langevin dynamics
using gradients of the data distribution estimated with score matching. Because gradients …

Emergent tool use from multi-agent autocurricula

B Baker, I Kanitscheider, T Markov, Y Wu… - arxiv preprint arxiv …, 2019 - arxiv.org
Through multi-agent competition, the simple objective of hide-and-seek, and standard
reinforcement learning algorithms at scale, we find that agents create a self-supervised …

Reinforcement learning with action-free pre-training from videos

Y Seo, K Lee, SL James… - … Conference on Machine …, 2022 - proceedings.mlr.press
Recent unsupervised pre-training methods have shown to be effective on language and
vision domains by learning useful representations for multiple downstream tasks. In this …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Planning to explore via self-supervised world models

R Sekar, O Rybkin, K Daniilidis… - International …, 2020 - proceedings.mlr.press
Reinforcement learning allows solving complex tasks, however, the learning tends to be task-
specific and the sample efficiency remains a challenge. We present Plan2Explore, a self …

Exploration by random network distillation

Y Burda, H Edwards, A Storkey, O Klimov - arxiv preprint arxiv …, 2018 - arxiv.org
We introduce an exploration bonus for deep reinforcement learning methods that is easy to
implement and adds minimal overhead to the computation performed. The bonus is the error …