Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model

J Zhang, X Ma, J Zhang, D Sun, X Zhou, C Mi… - Journal of environmental …, 2023 - Elsevier
The spatial heterogeneity of landslide influencing factors is the main reason for the poor
generalizability of the susceptibility evaluation model. This study aimed to construct a …

A review of earth artificial intelligence

Z Sun, L Sandoval, R Crystal-Ornelas… - Computers & …, 2022 - Elsevier
In recent years, Earth system sciences are urgently calling for innovation on improving
accuracy, enhancing model intelligence level, scaling up operation, and reducing costs in …

[HTML][HTML] Geohazards in the three Gorges Reservoir Area, China–Lessons learned from decades of research

H Tang, J Wasowski, CH Juang - Engineering Geology, 2019 - Elsevier
The impoundment of the 660-km long reservoir behind the huge Three Gorges Dam, the
world's largest hydropower station, increased regional seismicity and reactivated severe …

[HTML][HTML] A review of statistically-based landslide susceptibility models

P Reichenbach, M Rossi, BD Malamud, M Mihir… - Earth-science …, 2018 - Elsevier
In this paper, we do a critical review of statistical methods for landslide susceptibility
modelling and associated terrain zonations. Landslide susceptibility is the likelihood of a …

[HTML][HTML] Landslide susceptibility map** using machine learning: A literature survey

M Ado, K Amitab, AK Maji, E Jasińska, R Gono… - Remote Sensing, 2022 - mdpi.com
Landslide is a devastating natural disaster, causing loss of life and property. It is likely to
occur more frequently due to increasing urbanization, deforestation, and climate change …

[HTML][HTML] A hybrid ensemble-based deep-learning framework for landslide susceptibility map**

L Lv, T Chen, J Dou, A Plaza - … Journal of Applied Earth Observation and …, 2022 - Elsevier
Landslides are highly hazardous geological disasters that can potentially threaten the safety
of human life and property. As a result, landslide susceptibility map** (LSM) plays an …

Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model

F Huang, Z Cao, SH Jiang, C Zhou, J Huang, Z Guo - Landslides, 2020 - Springer
Conventional supervised and unsupervised machine learning models used for landslide
susceptibility prediction (LSP) have many drawbacks, such as an insufficient number of …

[HTML][HTML] Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management

Z Guo, Y Shi, F Huang, X Fan, J Huang - Geoscience Frontiers, 2021 - Elsevier
Abstract Machine learning algorithms are an important measure with which to perform
landslide susceptibility assessments, but most studies use GIS-based classification methods …

[HTML][HTML] Predicting flood susceptibility using LSTM neural networks

Z Fang, Y Wang, L Peng, H Hong - Journal of Hydrology, 2021 - Elsevier
Identifying floods and producing flood susceptibility maps are crucial steps for decision-
makers to prevent and manage disasters. Plenty of studies have used machine learning …

Review on landslide susceptibility map** using support vector machines

Y Huang, L Zhao - Catena, 2018 - Elsevier
Landslides are natural phenomena that can cause great loss of life and damage to property.
A landslide susceptibility map is a useful tool to help with land management in landslide …