Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Bidirectional copy-paste for semi-supervised medical image segmentation

Y Bai, D Chen, Q Li, W Shen… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In semi-supervised medical image segmentation, there exist empirical mismatch problems
between labeled and unlabeled data distribution. The knowledge learned from the labeled …

[HTML][HTML] TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers

J Chen, J Mei, X Li, Y Lu, Q Yu, Q Wei, X Luo, Y **e… - Medical Image …, 2024 - Elsevier
Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-
Net face limitations in modeling long-range dependencies. To address this, Transformers …

Customized segment anything model for medical image segmentation

K Zhang, D Liu - arxiv preprint arxiv:2304.13785, 2023 - arxiv.org
We propose SAMed, a general solution for medical image segmentation. Different from the
previous methods, SAMed is built upon the large-scale image segmentation model …

Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation

Y Ji, H Bai, C Ge, J Yang, Y Zhu… - Advances in neural …, 2022 - proceedings.neurips.cc
Despite the considerable progress in automatic abdominal multi-organ segmentation from
CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is …

Cross-level feature aggregation network for polyp segmentation

T Zhou, Y Zhou, K He, C Gong, J Yang, H Fu, D Shen - Pattern Recognition, 2023 - Elsevier
Accurate segmentation of polyps from colonoscopy images plays a critical role in the
diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the …

H2former: An efficient hierarchical hybrid transformer for medical image segmentation

A He, K Wang, T Li, C Du, S **a… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Accurate medical image segmentation is of great significance for computer aided diagnosis.
Although methods based on convolutional neural networks (CNNs) have achieved good …

Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer

H Wang, P Cao, J Wang, OR Zaiane - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Most recent semantic segmentation methods adopt a U-Net framework with an encoder-
decoder architecture. It is still challenging for U-Net with a simple skip connection scheme to …

Mamba-unet: Unet-like pure visual mamba for medical image segmentation

Z Wang, JQ Zheng, Y Zhang, G Cui, L Li - arxiv preprint arxiv:2402.05079, 2024 - arxiv.org
In recent advancements in medical image analysis, Convolutional Neural Networks (CNN)
and Vision Transformers (ViT) have set significant benchmarks. While the former excels in …