Large language models for generative information extraction: A survey
Abstract Information Extraction (IE) aims to extract structural knowledge from plain natural
language texts. Recently, generative Large Language Models (LLMs) have demonstrated …
language texts. Recently, generative Large Language Models (LLMs) have demonstrated …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
A survey on rag meeting llms: Towards retrieval-augmented large language models
As one of the most advanced techniques in AI, Retrieval-Augmented Generation (RAG) can
offer reliable and up-to-date external knowledge, providing huge convenience for numerous …
offer reliable and up-to-date external knowledge, providing huge convenience for numerous …
Large language models are few-shot clinical information extractors
A long-running goal of the clinical NLP community is the extraction of important variables
trapped in clinical notes. However, roadblocks have included dataset shift from the general …
trapped in clinical notes. However, roadblocks have included dataset shift from the general …
Unified structure generation for universal information extraction
Information extraction suffers from its varying targets, heterogeneous structures, and
demand-specific schemas. In this paper, we propose a unified text-to-structure generation …
demand-specific schemas. In this paper, we propose a unified text-to-structure generation …
Recent advances in natural language processing via large pre-trained language models: A survey
Large, pre-trained language models (PLMs) such as BERT and GPT have drastically
changed the Natural Language Processing (NLP) field. For numerous NLP tasks …
changed the Natural Language Processing (NLP) field. For numerous NLP tasks …
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing
This article surveys and organizes research works in a new paradigm in natural language
processing, which we dub “prompt-based learning.” Unlike traditional supervised learning …
processing, which we dub “prompt-based learning.” Unlike traditional supervised learning …
Inferfix: End-to-end program repair with llms
Software development life cycle is profoundly influenced by bugs; their introduction,
identification, and eventual resolution account for a significant portion of software …
identification, and eventual resolution account for a significant portion of software …
Prompt engineering for healthcare: Methodologies and applications
Prompt engineering is a critical technique in the field of natural language processing that
involves designing and optimizing the prompts used to input information into models, aiming …
involves designing and optimizing the prompts used to input information into models, aiming …
A systematic survey of prompt engineering on vision-language foundation models
Prompt engineering is a technique that involves augmenting a large pre-trained model with
task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be …
task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be …