Large language models for generative information extraction: A survey

D Xu, W Chen, W Peng, C Zhang, T Xu, X Zhao… - Frontiers of Computer …, 2024 - Springer
Abstract Information Extraction (IE) aims to extract structural knowledge from plain natural
language texts. Recently, generative Large Language Models (LLMs) have demonstrated …

A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

A survey on rag meeting llms: Towards retrieval-augmented large language models

W Fan, Y Ding, L Ning, S Wang, H Li, D Yin… - Proceedings of the 30th …, 2024 - dl.acm.org
As one of the most advanced techniques in AI, Retrieval-Augmented Generation (RAG) can
offer reliable and up-to-date external knowledge, providing huge convenience for numerous …

Large language models are few-shot clinical information extractors

M Agrawal, S Hegselmann, H Lang, Y Kim… - arxiv preprint arxiv …, 2022 - arxiv.org
A long-running goal of the clinical NLP community is the extraction of important variables
trapped in clinical notes. However, roadblocks have included dataset shift from the general …

Unified structure generation for universal information extraction

Y Lu, Q Liu, D Dai, X **ao, H Lin, X Han, L Sun… - arxiv preprint arxiv …, 2022 - arxiv.org
Information extraction suffers from its varying targets, heterogeneous structures, and
demand-specific schemas. In this paper, we propose a unified text-to-structure generation …

Recent advances in natural language processing via large pre-trained language models: A survey

B Min, H Ross, E Sulem, APB Veyseh… - ACM Computing …, 2023 - dl.acm.org
Large, pre-trained language models (PLMs) such as BERT and GPT have drastically
changed the Natural Language Processing (NLP) field. For numerous NLP tasks …

Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing

P Liu, W Yuan, J Fu, Z Jiang, H Hayashi… - ACM Computing …, 2023 - dl.acm.org
This article surveys and organizes research works in a new paradigm in natural language
processing, which we dub “prompt-based learning.” Unlike traditional supervised learning …

Inferfix: End-to-end program repair with llms

M **, S Shahriar, M Tufano, X Shi, S Lu… - Proceedings of the 31st …, 2023 - dl.acm.org
Software development life cycle is profoundly influenced by bugs; their introduction,
identification, and eventual resolution account for a significant portion of software …

Prompt engineering for healthcare: Methodologies and applications

J Wang, E Shi, S Yu, Z Wu, C Ma, H Dai, Q Yang… - arxiv preprint arxiv …, 2023 - arxiv.org
Prompt engineering is a critical technique in the field of natural language processing that
involves designing and optimizing the prompts used to input information into models, aiming …

A systematic survey of prompt engineering on vision-language foundation models

J Gu, Z Han, S Chen, A Beirami, B He, G Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
Prompt engineering is a technique that involves augmenting a large pre-trained model with
task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be …