Scientific discovery in the age of artificial intelligence
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …
and accelerate research, hel** scientists to generate hypotheses, design experiments …
[HTML][HTML] Battery safety: Machine learning-based prognostics
Lithium-ion batteries play a pivotal role in a wide range of applications, from electronic
devices to large-scale electrified transportation systems and grid-scale energy storage …
devices to large-scale electrified transportation systems and grid-scale energy storage …
Reaching the limit in autonomous racing: Optimal control versus reinforcement learning
A central question in robotics is how to design a control system for an agile mobile robot.
This paper studies this question systematically, focusing on a challenging setting …
This paper studies this question systematically, focusing on a challenging setting …
[HTML][HTML] Magnetic control of tokamak plasmas through deep reinforcement learning
Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a
promising path towards sustainable energy. A core challenge is to shape and maintain a …
promising path towards sustainable energy. A core challenge is to shape and maintain a …
Deep reinforcement learning at the edge of the statistical precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …
their relative performance on a large suite of tasks. Most published results on deep RL …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Wilds: A benchmark of in-the-wild distribution shifts
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …
Causal machine learning: A survey and open problems
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …
that formalize the data-generation process as a structural causal model (SCM). This …
Roadmap on machine learning in electronic structure
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
The dormant neuron phenomenon in deep reinforcement learning
In this work we identify the dormant neuron phenomenon in deep reinforcement learning,
where an agent's network suffers from an increasing number of inactive neurons, thereby …
where an agent's network suffers from an increasing number of inactive neurons, thereby …