Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …

[HTML][HTML] Battery safety: Machine learning-based prognostics

J Zhao, X Feng, Q Pang, M Fowler, Y Lian… - Progress in Energy and …, 2024 - Elsevier
Lithium-ion batteries play a pivotal role in a wide range of applications, from electronic
devices to large-scale electrified transportation systems and grid-scale energy storage …

Reaching the limit in autonomous racing: Optimal control versus reinforcement learning

Y Song, A Romero, M Müller, V Koltun… - Science Robotics, 2023 - science.org
A central question in robotics is how to design a control system for an agile mobile robot.
This paper studies this question systematically, focusing on a challenging setting …

[HTML][HTML] Magnetic control of tokamak plasmas through deep reinforcement learning

J Degrave, F Felici, J Buchli, M Neunert, B Tracey… - Nature, 2022 - nature.com
Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a
promising path towards sustainable energy. A core challenge is to shape and maintain a …

Deep reinforcement learning at the edge of the statistical precipice

R Agarwal, M Schwarzer, PS Castro… - Advances in neural …, 2021 - proceedings.neurips.cc
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …

A survey of meta-reinforcement learning

J Beck, R Vuorio, EZ Liu, Z **ong, L Zintgraf… - arxiv preprint arxiv …, 2023 - arxiv.org
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …

Wilds: A benchmark of in-the-wild distribution shifts

PW Koh, S Sagawa, H Marklund… - International …, 2021 - proceedings.mlr.press
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …

Causal machine learning: A survey and open problems

J Kaddour, A Lynch, Q Liu, MJ Kusner… - arxiv preprint arxiv …, 2022 - arxiv.org
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …

The dormant neuron phenomenon in deep reinforcement learning

G Sokar, R Agarwal, PS Castro… - … Conference on Machine …, 2023 - proceedings.mlr.press
In this work we identify the dormant neuron phenomenon in deep reinforcement learning,
where an agent's network suffers from an increasing number of inactive neurons, thereby …