Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Artificial intelligence applied to battery research: hype or reality?

T Lombardo, M Duquesnoy, H El-Bouysidy… - Chemical …, 2021 - ACS Publications
This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …

A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer

TW Ko, JA Finkler, S Goedecker, J Behler - Nature communications, 2021 - nature.com
Abstract Machine learning potentials have become an important tool for atomistic
simulations in many fields, from chemistry via molecular biology to materials science. Most of …

Performance and cost assessment of machine learning interatomic potentials

Y Zuo, C Chen, X Li, Z Deng, Y Chen… - The Journal of …, 2020 - ACS Publications
Machine learning of the quantitative relationship between local environment descriptors and
the potential energy surface of a system of atoms has emerged as a new frontier in the …

Machine learning interatomic potentials and long-range physics

DM Anstine, O Isayev - The Journal of Physical Chemistry A, 2023 - ACS Publications
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …

Machine learning for interatomic potential models

T Mueller, A Hernandez, C Wang - The Journal of chemical physics, 2020 - pubs.aip.org
The use of supervised machine learning to develop fast and accurate interatomic potential
models is transforming molecular and materials research by greatly accelerating atomic …

A review of the recent progress in battery informatics

C Ling - npj Computational Materials, 2022 - nature.com
Batteries are of paramount importance for the energy storage, consumption, and
transportation in the current and future society. Recently machine learning (ML) has …

Deep potentials for materials science

T Wen, L Zhang, H Wang, E Weinan… - Materials …, 2022 - iopscience.iop.org
To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …

Machine learning potentials for extended systems: a perspective

J Behler, G Csányi - The European Physical Journal B, 2021 - Springer
In the past two and a half decades machine learning potentials have evolved from a special
purpose solution to a broadly applicable tool for large-scale atomistic simulations. By …

[HTML][HTML] A deep potential model with long-range electrostatic interactions

L Zhang, H Wang, MC Muniz… - The Journal of …, 2022 - pubs.aip.org
Machine learning models for the potential energy of multi-atomic systems, such as the deep
potential (DP) model, make molecular simulations with the accuracy of quantum mechanical …