Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

A comprehensive survey on applications of transformers for deep learning tasks

S Islam, H Elmekki, A Elsebai, J Bentahar… - Expert Systems with …, 2024 - Elsevier
Abstract Transformers are Deep Neural Networks (DNN) that utilize a self-attention
mechanism to capture contextual relationships within sequential data. Unlike traditional …

Segment anything model for medical image analysis: an experimental study

MA Mazurowski, H Dong, H Gu, J Yang, N Konz… - Medical Image …, 2023 - Elsevier
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation

Z **ng, T Ye, Y Yang, G Liu, L Zhu - International Conference on Medical …, 2024 - Springer
The Transformer architecture has demonstrated remarkable results in 3D medical image
segmentation due to its capability of modeling global relationships. However, it poses a …

Medical sam adapter: Adapting segment anything model for medical image segmentation

J Wu, W Ji, Y Liu, H Fu, M Xu, Y Xu, Y ** - arxiv preprint arxiv:2304.12620, 2023 - arxiv.org
The Segment Anything Model (SAM) has recently gained popularity in the field of image
segmentation due to its impressive capabilities in various segmentation tasks and its prompt …

Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI

Z Zhu, X He, G Qi, Y Li, B Cong, Y Liu - Information Fusion, 2023 - Elsevier
Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and
treatment. The utilization of multimodal information plays a crucial role in brain tumor …

Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

nnformer: Volumetric medical image segmentation via a 3d transformer

HY Zhou, J Guo, Y Zhang, X Han, L Yu… - … on Image Processing, 2023 - ieeexplore.ieee.org
Transformer, the model of choice for natural language processing, has drawn scant attention
from the medical imaging community. Given the ability to exploit long-term dependencies …

Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …