A systematic literature review on software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools

J Pachouly, S Ahirrao, K Kotecha… - … Applications of Artificial …, 2022 - Elsevier
Delivering high-quality software products is a challenging task. It needs proper coordination
from various teams in planning, execution, and testing. Many software products have high …

Progress on approaches to software defect prediction

Z Li, XY **g, X Zhu - Iet Software, 2018 - Wiley Online Library
Software defect prediction is one of the most popular research topics in software
engineering. It aims to predict defect‐prone software modules before defects are discovered …

Heterogeneous defect prediction

J Nam, S Kim - Proceedings of the 2015 10th joint meeting on …, 2015 - dl.acm.org
Software defect prediction is one of the most active research areas in software engineering.
We can build a prediction model with defect data collected from a software project and …

A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets

R Panigrahi, S Borah, AK Bhoi, MF Ijaz, M Pramanik… - Mathematics, 2021 - mdpi.com
The widespread acceptance and increase of the Internet and mobile technologies have
revolutionized our existence. On the other hand, the world is witnessing and suffering due to …

Perceptions, expectations, and challenges in defect prediction

Z Wan, X **a, AE Hassan, D Lo, J Yin… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Defect prediction has been an active research area for over four decades. Despite
numerous studies on defect prediction, the potential value of defect prediction in practice …

How far we have progressed in the journey? an examination of cross-project defect prediction

Y Zhou, Y Yang, H Lu, L Chen, Y Li, Y Zhao… - ACM Transactions on …, 2018 - dl.acm.org
Background. Recent years have seen an increasing interest in cross-project defect
prediction (CPDP), which aims to apply defect prediction models built on source projects to a …

Feature selection for imbalanced data based on neighborhood rough sets

H Chen, T Li, X Fan, C Luo - Information sciences, 2019 - Elsevier
Feature selection is a meaningful aspect of data mining that aims to select more relevant
data features and provide more concise and explicit data descriptions. It is beneficial for …

Seml: A semantic LSTM model for software defect prediction

H Liang, Y Yu, L Jiang, Z **e - IEEE Access, 2019 - ieeexplore.ieee.org
Software defect prediction can assist developers in finding potential bugs and reducing
maintenance cost. Traditional approaches usually utilize software metrics (Lines of Code …

Performance analysis of feature selection methods in software defect prediction: a search method approach

AO Balogun, S Basri, SJ Abdulkadir, AS Hashim - applied sciences, 2019 - mdpi.com
Software Defect Prediction (SDP) models are built using software metrics derived from
software systems. The quality of SDP models depends largely on the quality of software …

Incremental weighted ensemble broad learning system for imbalanced data

K Yang, Z Yu, CLP Chen, W Cao… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Broad learning system (BLS) is a novel and efficient model, which facilitates representation
learning and classification by concatenating feature nodes and enhancement nodes. In spite …