Deep learning-based human pose estimation: A survey

C Zheng, W Wu, C Chen, T Yang, S Zhu, J Shen… - ACM Computing …, 2023 - dl.acm.org
Human pose estimation aims to locate the human body parts and build human body
representation (eg, body skeleton) from input data such as images and videos. It has drawn …

GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Weakly-supervised video anomaly detection with robust temporal feature magnitude learning

Y Tian, G Pang, Y Chen, R Singh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection with weakly supervised video-level labels is typically formulated as a
multiple instance learning (MIL) problem, in which we aim to identify snippets containing …

A comprehensive survey on deep clustering: Taxonomy, challenges, and future directions

S Zhou, H Xu, Z Zheng, J Chen, Z Li, J Bu, J Wu… - ACM Computing …, 2024 - dl.acm.org
Clustering is a fundamental machine learning task, which aim at assigning instances into
groups so that similar samples belong to the same cluster while dissimilar samples belong …

Video anomaly detection with spatio-temporal dissociation

Y Chang, Z Tu, W **e, B Luo, S Zhang, H Sui, J Yuan - Pattern Recognition, 2022 - Elsevier
Anomaly detection in videos remains a challenging task due to the ambiguous definition of
anomaly and the complexity of visual scenes from real video data. Different from the …

Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models

Y Liu, D Yang, Y Wang, J Liu, J Liu… - ACM Computing …, 2024 - dl.acm.org
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …

Catching both gray and black swans: Open-set supervised anomaly detection

C Ding, G Pang, C Shen - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Despite most existing anomaly detection studies assume the availability of normal training
samples only, a few labeled anomaly examples are often available in many real-world …

Unknown-aware object detection: Learning what you don't know from videos in the wild

X Du, X Wang, G Gozum, Y Li - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Building reliable object detectors that can detect out-of-distribution (OOD) objects is critical
yet underexplored. One of the key challenges is that models lack supervision signals from …

Feature prediction diffusion model for video anomaly detection

C Yan, S Zhang, Y Liu, G Pang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Anomaly detection in the video is an important research area and a challenging task in real
applications. Due to the unavailability of large-scale annotated anomaly events, most …