Partially observable markov decision processes and robotics

H Kurniawati - Annual Review of Control, Robotics, and …, 2022 - annualreviews.org
Planning under uncertainty is critical to robotics. The partially observable Markov decision
process (POMDP) is a mathematical framework for such planning problems. POMDPs are …

Pomdp-based statistical spoken dialog systems: A review

S Young, M Gašić, B Thomson… - Proceedings of the …, 2013 - ieeexplore.ieee.org
Statistical dialog systems (SDSs) are motivated by the need for a data-driven framework that
reduces the cost of laboriously handcrafting complex dialog managers and that provides …

[LIBRO][B] Algorithms for decision making

MJ Kochenderfer, TA Wheeler, KH Wray - 2022 - books.google.com
A broad introduction to algorithms for decision making under uncertainty, introducing the
underlying mathematical problem formulations and the algorithms for solving them …

Partially observable markov decision processes in robotics: A survey

M Lauri, D Hsu, J Pajarinen - IEEE Transactions on Robotics, 2022 - ieeexplore.ieee.org
Noisy sensing, imperfect control, and environment changes are defining characteristics of
many real-world robot tasks. The partially observable Markov decision process (POMDP) …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

[HTML][HTML] Perception, planning, control, and coordination for autonomous vehicles

SD Pendleton, H Andersen, X Du, X Shen, M Meghjani… - Machines, 2017 - mdpi.com
Autonomous vehicles are expected to play a key role in the future of urban transportation
systems, as they offer potential for additional safety, increased productivity, greater …

Robust reinforcement learning on state observations with learned optimal adversary

H Zhang, H Chen, D Boning, CJ Hsieh - arxiv preprint arxiv:2101.08452, 2021 - arxiv.org
We study the robustness of reinforcement learning (RL) with adversarially perturbed state
observations, which aligns with the setting of many adversarial attacks to deep …

[LIBRO][B] Partially observed Markov decision processes

V Krishnamurthy - 2016 - books.google.com
Covering formulation, algorithms, and structural results, and linking theory to real-world
applications in controlled sensing (including social learning, adaptive radars and sequential …

Online algorithms for POMDPs with continuous state, action, and observation spaces

Z Sunberg, M Kochenderfer - Proceedings of the International …, 2018 - ojs.aaai.org
Online solvers for partially observable Markov decision processes have been applied to
problems with large discrete state spaces, but continuous state, action, and observation …

Rational quantitative attribution of beliefs, desires and percepts in human mentalizing

CL Baker, J Jara-Ettinger, R Saxe… - Nature Human …, 2017 - nature.com
Social cognition depends on our capacity for 'mentalizing', or explaining an agent's
behaviour in terms of their mental states. The development and neural substrates of …