Quantum error mitigation

Z Cai, R Babbush, SC Benjamin, S Endo… - Reviews of Modern …, 2023 - APS
For quantum computers to successfully solve real-world problems, it is necessary to tackle
the challenge of noise: the errors that occur in elementary physical components due to …

[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Quantum variational algorithms are swamped with traps

ER Anschuetz, BT Kiani - Nature Communications, 2022 - nature.com
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …

Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX Quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

Power of data in quantum machine learning

HY Huang, M Broughton, M Mohseni… - Nature …, 2021 - nature.com
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …

Noise-induced barren plateaus in variational quantum algorithms

S Wang, E Fontana, M Cerezo, K Sharma… - Nature …, 2021 - nature.com
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …

Group-invariant quantum machine learning

M Larocca, F Sauvage, FM Sbahi, G Verdon, PJ Coles… - PRX Quantum, 2022 - APS
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …

A quantum computing view on unitary coupled cluster theory

A Anand, P Schleich, S Alperin-Lea… - Chemical Society …, 2022 - pubs.rsc.org
We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze
which are used to variationally solve the electronic structure problem on quantum …